OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 4, Iss. 2 — Feb. 1, 2014
  • pp: 338–345

Micro-Raman spectroscopic visualization of lattice vibrations and strain in He+- implanted single-crystal LiNbO3

Hsu-Cheng Huang, Jerry I. Dadap, Irving P. Herman, Hassaram Bakhru, and Richard M. Osgood, Jr.  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 2, pp. 338-345 (2014)
http://dx.doi.org/10.1364/OME.4.000338


View Full Text Article

Enhanced HTML    Acrobat PDF (3286 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Scanning micro-Raman spectroscopy has been utilized to image and investigate strain in He+-implanted congruent LiNbO3 samples. By using abruptly patterned implanted samples, we show that the spatial two-dimensional mapping of the Raman spectral peaks can be used to image the strain distribution and determine its absolute magnitude. We demonstrate that both short- and long-range length-scale in-plane and out-of-plane strain and stress states can be determined using the secular equations of phonon-deformation-potential theory. We also show that two-dimensional Raman imaging can be used to visualize the relaxation of strain in the crystal during low-temperature annealing.

© 2014 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(160.4670) Materials : Optical materials
(300.6450) Spectroscopy : Spectroscopy, Raman
(310.3840) Thin films : Materials and process characterization

ToC Category:
Lithium Niobate

History
Original Manuscript: December 4, 2013
Revised Manuscript: January 19, 2014
Manuscript Accepted: January 20, 2014
Published: January 24, 2014

Citation
Hsu-Cheng Huang, Jerry I. Dadap, Irving P. Herman, Hassaram Bakhru, and Richard M. Osgood, "Micro-Raman spectroscopic visualization of lattice vibrations and strain in He+- implanted single-crystal LiNbO3," Opt. Mater. Express 4, 338-345 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-2-338


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University, 2001).
  2. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007). [CrossRef]
  3. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005). [CrossRef]
  4. F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007). [CrossRef]
  5. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998). [CrossRef]
  6. F. Schrempel, Th. Gischkat, H. Hartung, E. B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B250(1–2), 164–168 (2006). [CrossRef]
  7. A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B175–177(0), 394–397 (2001). [CrossRef]
  8. A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater.300(2-3), 242–254 (2002). [CrossRef]
  9. T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407 (2000). [CrossRef]
  10. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express16(18), 13979–13989 (2008). [CrossRef] [PubMed]
  11. J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys. A: Mater.79(3), 691–696 (2004). [CrossRef]
  12. P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopolan, “Raman studies of ferroelectric domain walls in lithium tantalate and niobate,” Phys. Status Solidi C4(3), 830–833 (2007). [CrossRef]
  13. G. Stone and V. Dierolf, “Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate,” Opt. Lett.37(6), 1032–1034 (2012). [CrossRef] [PubMed]
  14. P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010). [CrossRef]
  15. J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys.101(3), 033512 (2007). [CrossRef]
  16. D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett.92(16), 161908 (2008). [CrossRef]
  17. N. Dong, D. Jaque, F. Chen, and Q. Lu, “Second harmonic and Raman imaging of He+ implanted KTiOPO4 waveguides,” Opt. Express19(15), 13934–13939 (2011). [CrossRef] [PubMed]
  18. M. Quintanilla, E. M. Rodríguez, E. Cantelar, F. Cussó, and C. Domingo, “Micro-Raman characterization of Zn-diffused channel waveguides in Tm3+:LiNbO3.,” Opt. Express18(6), 5449–5458 (2010). [CrossRef] [PubMed]
  19. I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol.11(2), 139–154 (1996). [CrossRef]
  20. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007). [CrossRef]
  21. D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, “Strain tuning of ferroelectric thin films,” Annu. Rev. Mater. Res.37(1), 589–626 (2007). [CrossRef]
  22. J. Ziegler, 2008, http://www.srim.org .
  23. I. R. Lewis and H. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, 2001).
  24. K. K. Wong, ed., Properties of Lithium Niobate (INSPEC, The Institution of Electrical Engineers, 2002).
  25. S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C1(11), 3126–3129 (2004). [CrossRef]
  26. H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express3(2), 126–142 (2013). [CrossRef]
  27. V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B61(13), 8806–8813 (2000). [CrossRef]
  28. Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids60(6), 819–825 (1999). [CrossRef]
  29. B. Mihailova, I. Savatinova, I. Savova, and L. Konstantinov, “Modeling of Raman spectra of H:LiNbO3,” Solid State Commun.116(1), 11–15 (2000). [CrossRef]
  30. E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996). [CrossRef]
  31. D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-cyrstal LiNbO3,” Appl. Phys. Lett.91(11), 112908 (2007). [CrossRef]
  32. M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys.112(12), 123108 (2012). [CrossRef]
  33. G. Pezzotti, H. Hagihara, and W. Zhu, “Quantitative investigation of Raman selection rules and validation of the secular equation for trigonal LiNbO3,” J. Phys. D Appl. Phys.46(14), 145103 (2013). [CrossRef]
  34. R. V. Damie, “Elastic constants of lithium niobate,” J. Phys. D Appl. Phys.25(7), 1091–1095 (1992). [CrossRef]
  35. A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010). [CrossRef]
  36. A. de Bernabé, C. Prieto, and A. de Andrés, “Effect of stoichiometry on the dynamic mechanical properties of LiNbO3,” J. Appl. Phys.79(1), 143 (1996). [CrossRef]
  37. D. A. Freedman, D. Roundy, and T. A. Arias, “Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain,” Phys. Rev. B80(6), 064108 (2009). [CrossRef]
  38. M. A. Carpenter, R. E. A. McKnight, C. J. Howard, Q. Zhou, B. J. Kennedy, and K. S. Knight, “Characteristic length scale for strain fields around impurity cations in perovskites,” Phys. Rev. B80(21), 214101 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited