OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 4, Iss. 2 — Feb. 1, 2014
  • pp: 375–383

Geometric optics of gold nanoparticle-polydimethylsiloxane thin film systems

Jeremy R. Dunklin, Gregory T. Forcherio, and D. Keith Roper  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 2, pp. 375-383 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1612 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Interest in optical properties of plasmonic nanoparticles embedded in transparent dielectrics is growing due to potential uses in biomedicine, sustainable energy, and manufacturing. This work evaluates geometric optics in polymer thin films containing mono- or polydisperse gold nanoparticles (AuNP) using a compact linear algebraic sum. Reflection and transmission from polydimethylsiloxane (PDMS) films containing uniformly- or assymetrically-distributed monodisperse or polydisperse AuNPs decreased with AuNP morphological isotropy and particle density. In PDMS, monodisperse AuNPs increased optical attenuation linearly with gold content, while polydisperse AuNPs reduced from hydrogen tetrachloroaurate (TCA) increased optical attenuation in proportion to order-of-magnitude rises in gold content. Polydisperse AuNP concentrated asymmetrically at one film interface exhibited higher attenuation. Cumulative optical responses from AuNP-PDMS films paired with another film or reflective element were within 0.04 units on average from values predicted for transmission, reflection, or attenuation using linear algebra. These results support design of NP-containing dielectric films to integrate into biochemical, microelectromechanical, and optoelectronic devices and systems.

© 2014 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(160.5470) Materials : Polymers
(310.6860) Thin films : Thin films, optical properties
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Thin Films

Original Manuscript: October 31, 2013
Revised Manuscript: January 22, 2014
Manuscript Accepted: January 23, 2014
Published: January 29, 2014

Jeremy R. Dunklin, Gregory T. Forcherio, and D. Keith Roper, "Geometric optics of gold nanoparticle-polydimethylsiloxane thin film systems," Opt. Mater. Express 4, 375-383 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem.22(3), 1206–1211 (2011). [CrossRef]
  2. F.-X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, and D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett.99(15), 153304 (2011). [CrossRef]
  3. V. Levchenko, M. Grouchko, S. Magdassi, T. Saraidarov, and R. Reisfeld, “Enhancement of luminescence of Rhodamine B by gold nanoparticles in thin films on glass for active optical materials applications,” Opt. Mater. (Amst)34(2), 360–364 (2011). [CrossRef]
  4. A. Massaro, F. Spano, R. Cingolani, and A. Athanassiou, “Experimental optical characterization and polymeric layouts of gold PDMS nanocomposite sensor for liquid detection,” IEEE Sens. J.11(9), 1780–1786 (2011). [CrossRef]
  5. D. Ryu, K. J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, and A. M. Gusman, “In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing,” Smart Struct. Syst.8(5), 471–486 (2011). [CrossRef]
  6. Y.-Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus, “Downscaling of self-aligned, all-printed polymer thin-film transistors,” Nat. Nanotechnol.2(12), 784–789 (2007). [CrossRef] [PubMed]
  7. Y.-C. Hung, T.-Y. Lin, W.-T. Hsu, Y.-W. Chiu, Y.-S. Wang, and L. Fruk, “Functional DNA biopolymers and nanocomposite for optoelectronic applications,” Opt. Mater. (Amst)34(7), 1208–1213 (2012). [CrossRef]
  8. W.-K. Kuo and M.-T. Chen, “Electro-optic polymer film light modulator model based on grating-coupled long-range surface plasmon resonance,” J. Opt.12(11), 115001 (2010). [CrossRef]
  9. E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev.38(6), 1759–1782 (2009). [CrossRef] [PubMed]
  10. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond)2(5), 681–693 (2007). [CrossRef] [PubMed]
  11. Y. Liu, H. Miyoshi, and M. Nakamura, “Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles,” Int. J. Cancer120(12), 2527–2537 (2007). [CrossRef] [PubMed]
  12. M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” Lancet Oncol.7(8), 657–667 (2006). [CrossRef] [PubMed]
  13. J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett.9(12), 4417–4423 (2009). [CrossRef] [PubMed]
  14. R. Shenhar, T. B. Norsten, and V. M. Rotello, “Polymer-Mediated Nanoparticle Assembly: Structural Control and Applications,” Adv. Mater.17(6), 657–669 (2005). [CrossRef]
  15. Q. Zhang, J.-J. Xu, Y. Liu, and H.-Y. Chen, “In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems,” Lab Chip8(2), 352–357 (2008). [CrossRef] [PubMed]
  16. K. R. Berry, A. G. Russell, P. A. Blake, and D. Keith Roper, “Gold nanoparticles reduced in situ and dispersed in polymer thin films: optical and thermal properties,” Nanotechnology23(37), 375703 (2012). [CrossRef] [PubMed]
  17. J. R. Dunklin, G. T. Forcherio, K. R. Berry, and D. K. Roper, “Asymmetric reduction of gold nanoparticles into thermoplasmonic polydimethylsiloxane thin films,” ACS Appl. Mater. Interfaces5(17), 8457–8466 (2013). [CrossRef] [PubMed]
  18. G. T. Forcherio and D. K. Roper, “Optical attenuation of plasmonic nanocomposites within photonic devices,” Appl. Opt.52(25), 6417–6427 (2013). [CrossRef] [PubMed]
  19. J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express3(9), 1313 (2013). [CrossRef]
  20. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix method and its applications to electromagnetic scattering by particles: A current perspective,” J. Quant. Spectrosc. Radiat. Transf.111(11), 1700–1703 (2010). [CrossRef]
  21. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A25(11), 2693–2703 (2008). [CrossRef] [PubMed]
  22. E. Thouti, N. Chander, V. Dutta, and V. K. Komarala, “Optical properties of Ag nanoparticle layers deposited on silicon substrates,” J. Opt.15(3), 035005 (2013). [CrossRef]
  23. C.-H. Poh, L. Rosa, S. Juodkazis, and P. Dastoor, “FDTD modeling to enhance the performance of an organic solar cell embedded with gold nanoparticles,” Opt. Mater. Express1(7), 1326 (2011). [CrossRef]
  24. G. Dayal and S. Anantha Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt.15(5), 055106 (2013). [CrossRef]
  25. P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, and Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt.13(7), 075005 (2011). [CrossRef]
  26. D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B29(1), 88 (2012). [CrossRef]
  27. D. DeJarnette, J. Norman, and D. K. Roper, “Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry,” Appl. Phys. Lett.101(18), 183104 (2012). [CrossRef]
  28. D. K. Roper, P. Blake, D. DeJarnette, and B. Harbin, “Plasmon coupling enhanced in nanostructured chem/bio sensors,” in Nano-Plasmonics: Advanced Device Applications, J.W.M. Chon and K. Iniewski, eds. (CRC Press, 2013).
  29. S. Derenko, R. Kullock, Z. Wu, A. Sarangan, C. Schuster, L. M. Eng, and T. Härtling, “Local photochemical plasmon mode tuning in metal nanoparticle arrays,” Opt. Mater. Express3(6), 794 (2013). [CrossRef]
  30. E. Pedrueza, J. L. Valdés, V. Chirvony, R. Abargues, J. Hernández-Saz, M. Herrera, S. I. Molina, and J. P. Martínez-Pastor, “Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: Optical characterization and comparison with Maxwell-Garnett modeling,” Adv. Funct. Mater.21(18), 3502–3507 (2011). [CrossRef]
  31. Q. Liang, W. Yu, W. Zhao, T. Wang, J. Zhao, H. Zhang, and S. Tao, “Numerical study of the meta-nanopyramid array as efficient solar energy absorber,” Opt. Mater. Express3(8), 1187 (2013). [CrossRef]
  32. W. Park, K. Emoto, Y. Jin, A. Shimizu, V. A. Tamma, and W. Zhang, “Controlled self-assembly of gold nanoparticles mediated by novel organic molecular cages,” Opt. Mater. Express3(2), 205 (2013). [CrossRef]
  33. H. Yoon, S. A. Maier, D. D. C. Bradley, and P. N. Stavrinou, “Surface plasmon coupled emission using conjugated light-emitting polymer films [Invited],” Opt. Mater. Express1(6), 1127 (2011). [CrossRef]
  34. N. Fahim, Z. Ouyang, Y. Zhang, B. Jia, Z. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express2(2), 190 (2012). [CrossRef]
  35. P. O. Caffrey, B. K. Nayak, and M. C. Gupta, “Ultrafast laser-induced microstructure/nanostructure replication and optical properties,” Appl. Opt.51(5), 604–609 (2012). [CrossRef] [PubMed]
  36. A. Russell, “Plasmonic Pervaporation via Gold Nanoparticle-Functionalized Nanocomposite Membranes,” Ph.D Dissertation, University of Arkansas (2012).
  37. S. Shahin, P. Gangopadhyay, and R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: Plasmon enhanced performance using Au nanoparticles,” Appl. Phys. Lett.101(5), 053109 (2012). [CrossRef]
  38. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012). [CrossRef]
  39. J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett.12(10), 5143–5147 (2012). [CrossRef] [PubMed]
  40. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.203(359-371), 385–420 (1904). [CrossRef]
  41. G. A. Niklasson, C. G. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt.20(1), 26–30 (1981). [CrossRef] [PubMed]
  42. A. G. Russell, M. D. McKnight, J. A. Hestekin, and D. K. Roper, “Thermodynamics of optoplasmonic heating in fluid-filled gold-nanoparticle-plated capillaries,” Langmuir27(12), 7799–7805 (2011). [CrossRef] [PubMed]
  43. A. G. Russell, M. D. McKnight, A. C. Sharp, J. A. Hestekin, and D. K. Roper, “Gold nanoparticles allow optoplasmonic evaporation from open silica cells with a logarithmic approach to steady-state thermal profiles,” J. Phys. Chem. C114(22), 10132–10139 (2010). [CrossRef]
  44. M. P. Hoepfner and D. K. Roper, “Describing temperature increases in plasmon-resonant nanoparticle systems,” J. Therm. Anal. Calorim.98(1), 197–202 (2009). [CrossRef]
  45. D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles,” J Phys Chem C Nanomater Interfaces111(9), 3636–3641 (2007). [CrossRef] [PubMed]
  46. W. Ahn, B. Taylor, A. G. Dall’Asén, and D. K. Roper, “Electroless gold island thin films: photoluminescence and thermal transformation to nanoparticle ensembles,” Langmuir24(8), 4174–4184 (2008). [CrossRef] [PubMed]
  47. J. Kao, P. Bai, V. P. Chuang, Z. Jiang, P. Ercius, and T. Xu, “Nanoparticle assemblies in thin films of supramolecular nanocomposites,” Nano Lett.12(5), 2610–2618 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited