OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 3 — Mar. 1, 2014
  • pp: 434–448

Ce-doped and Ce/Au-codoped alumino-phospho-silicate fibers: Spectral attenuation trends at high-energy electron irradiation and posterior low-power optical bleaching

A.V. Kir’yanov, S. Ghosh, M.C. Paul, Y.O. Barmenkov, V. Aboites, and N. S. Kozlova  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 3, pp. 434-448 (2014)
http://dx.doi.org/10.1364/OME.4.000434


View Full Text Article

Enhanced HTML    Acrobat PDF (2130 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a study of attenuation spectra’ transformations in a couple of Cerium (Ce) doped alumino-phospho-silicate fibers (one of them codoped with gold (Au)), occurring under irradiation by a beam of high-energy β-electrons. The experimental data reveals an essential effect of β-irradiation upon the absorptive properties of the fibers, given by noticeable susceptibility of Ce ions in Ce3+/Ce4+ valence states to the treatment, arisen as growth followed by saturation of induced absorption. We also report posterior bleaching of the β-darkened fibers, also in terms of attenuation spectra’ transformations, at exposing them to low-power green (a He-Ne laser) and UV (mercury lamp) light, the effect never reported for Ce-doped fibers. It is shown that both phenomena are less expressed in Ce fiber codoped with Au than in Au-free one and that the spectral changes in the former are more regular and plain vs. irradiation dose and bleaching time. Possible mechanisms responsible for the phenomena and their impact at using such fibers for dosimetry and other applications are discussed.

© 2014 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(160.2750) Materials : Glass and other amorphous materials
(160.5690) Materials : Rare-earth-doped materials
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(350.5610) Other areas of optics : Radiation

ToC Category:
Glass and Other Amorphous Materials

History
Original Manuscript: September 30, 2013
Revised Manuscript: December 2, 2013
Manuscript Accepted: December 3, 2013
Published: February 7, 2014

Citation
A.V. Kir’yanov, S. Ghosh, M.C. Paul, Y.O. Barmenkov, V. Aboites, and N. S. Kozlova, "Ce-doped and Ce/Au-codoped alumino-phospho-silicate fibers: Spectral attenuation trends at high-energy electron irradiation and posterior low-power optical bleaching," Opt. Mater. Express 4, 434-448 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-3-434


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Berthold, “Overview of prototype fiber optic sensors for future application in nuclear environments,” Proc. SPIE2425, 74–83 (1994). [CrossRef]
  2. F. Berghmans, O. Deparis, S. Coenen, M. Decréton, and P. Jucker, “Optical fibres in nuclear radiation environments: potential applications radiation effects need for standards,” in Trends in Optical Fibre Metrology and Standards, O.D.D. Soares, ed. (NATO ASI Series E: Applied Sciences, Kluwer Academic, 1995), vol. 285, pp. 131–156.
  3. J. K. Partin, “Radiation response of optical fibers in a nuclear reactor,” Proc. SPIE506, 42–49 (1984). [CrossRef]
  4. P. Liu, X. Bao, K. Brown, and N. Kulkarni, “Gamma-induced attenuation in normal single- and multi-mode, Ge-doped and P-doped optical fibers: A fiber optic dosimeter for low dose levels,” Can. J. Phys.78(2), 89–97 (2000). [CrossRef]
  5. M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, ““Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Crystal,” Sol.355, 1496–1507 (2009).
  6. S. Ghosh, S. Das, M. C. Paul, K. Dasgupta, D. Bohra, H. S. Chaudhary, L. Panwar, P. K. Bhatnagar, and S. G. Vaijapurkar, “Evaluation of the performance of high phosphorous with germanium codoped multimode optical fiber for use as a radiation sensor at low dose rates,” Appl. Opt.50(25), E80–E85 (2011). [CrossRef]
  7. S. C. Jones, J. A. Sweet, P. Braunlich, J. M. Hoffman, and J. E. Hegland, “A remote fibre optic laser TLD system,” Rad. Prot. Dos.47, 525–528 (1993).
  8. A. L. Houston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B184(1-2), 55–67 (2001). [CrossRef]
  9. C. Canevali, M. Mattoni, F. Morazzoni, R. Scotti, M. Casu, A. Musinu, R. Krsmanovic, S. Polizzi, A. Speghini, and M. Bettinelli, “Stability of luminescent trivalent cerium in silica host glasses modified by boron and phosphorus,” J. Am. Chem. Soc.127(42), 14681–14691 (2005). [CrossRef] [PubMed]
  10. M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, P. Fabeni, G. P. Pazzi, M. Martini, A. Vedda, and S. Baccaro, “Efficient radioluminescence of the Ce3+-doped Na-Gd phosphate glasses,” Appl. Phys. Lett.77(14), 2159–2161 (2000). [CrossRef]
  11. S. Baccaro, R. Dall’Igna, P. Fabeni, M. Martini, J. A. Mares, F. Meinardi, M. Nikl, K. Nitsch, G. P. Pazzi, P. Polato, C. Susini, A. Vedda, G. Zanella, and R. Zannoni, “M. Martini, J.A. Mares, F. Meinardi, M. Nikl, K. Nitsch, G.P. Pazzi, P. Polato, C. Susini, A. Vedda, G. Zanella, and R. Zannoni, “Ce3+ or Tb3+ -doped phosphate and silicate scintillating glasses,” J. Lumin.87-89, 673–675 (2000). [CrossRef]
  12. T. Murata, M. Sato, H. Yoshida, and K. Morinaga, ““Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Crystal,” Sol.351, 312–316 (2005).
  13. M. Laroche, S. Girard, R. Moncorge, M. Bettinelli, R. Abdulsabirov, and V. Semashko, “Beneficial effect of Lu3+ and Yb3+ ions in UV laser materials,” Opt. Mater.22(2), 147–154 (2003). [CrossRef]
  14. Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos, “Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts,” Science301(5635), 935–938 (2003). [CrossRef] [PubMed]
  15. X. Wang, J. A. Rodriguez, J. C. Hanson, M. Pérez, and J. Evans, “In situ time-resolved characterization of Au-CeO2 and AuOx-CeO2 catalysts during the water-gas shift reaction: presence of Au and O vacancies in the active phase,” J. Chem. Phys.123(22), 221101 (2005). [CrossRef] [PubMed]
  16. E. J. Friebele, “Radiation protection of fiber optics materials: Effect of cerium doping on the radiation-induced absorption,” Appl. Phys. Lett.27(4), 210–212 (1975). [CrossRef]
  17. E. V. Anoikin, A. N. Guryanov, D. D. Gusovsky, E. M. Dianov, V. M. Mashinsky, S. I. Miroshnichenko, V. B. Neustruev, V. A. Tikhomirov, and Yu. B. Zverev, “UV and gamma radiation damage in silica glass and fibres doped with germanium and cerium,” Nucl. Instrum. Methods Phys. Res. B65(1-4), 392–396 (1992). [CrossRef]
  18. A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, S. Keffer, A. Lauria, M. Martini, F. Moretti, G. Spinolo, M. Nikl, N. Solovieva, and G. Brambilla, “Ce3+–doped optical fibres for remote radiation dosimetry,” Appl. Phys. Lett.85(26), 6356–6358 (2004). [CrossRef]
  19. N. Chiodini, G. Brambilla, A. Vedda, D. Di Martino, M. Fasoli, A. Lauria, M. Redaelli, and E. Rosetta, “SiO2 – based scincillating fibres for X-ray detection,” Proc. SPIE5198, 298–305 (2004). [CrossRef]
  20. J. L. Cruz, F. Lliso-Valverde, M. V. Andres, and J. Perez-Calatayud, “Induced attenuation in Ce and Nd doped fibers irradiated with electron beams under low dose regime,” Opt. Commun.252(4-6), 286–291 (2005). [CrossRef]
  21. E. Mones, I. Veronese, F. Moretti, M. Fasoli, G. Loi, E. Negri, M. Brambilla, N. Chiodini, and A. Vedda, “Feasibilty study for the use of Ce3+–doped optical fibers in radiotherapy,” Nucl. Instrum. Methods Phys. Res. A562(1), 449–455 (2006). [CrossRef]
  22. E. Mones, I. Veronese, A. Vedda, G. Loi, M. Fazoli, F. Moretti, N. Chiodini, B. Canillo, and M. Brambilla, “Ce-doped optical fibre as radioluminescent dosimeter in radiotherapy,” Rad. Measur.43(2-6), 888–892 (2008). [CrossRef]
  23. M. M. Broer, R. L. Cone, and J. R. Simpson, “Ultraviolet-induced distributed-feedback gratings in Ce(3+) -doped silica optical fibers,” Opt. Lett.16(18), 1391–1393 (1991). [CrossRef] [PubMed]
  24. L. Dong, J. L. Archambault, L. Reekie, P. S. Russell, and D. N. Payne, “Bragg gratings in Ce3+-doped fibers written by a single excimer pulse,” Opt. Lett.18(11), 861–863 (1993). [CrossRef] [PubMed]
  25. H. Poignant, S. Boj, E. Delavaque, M. Monerie, T. Taunay, P. Niay, P. Bernaje, and W. X. Xie, ““Ultraviolet-induced permanent Bragg gratings in Ce-doped fluorozirconate glasses or optical fibers,” J. Non-Crystal,” Sol.184, 282–285 (1995).
  26. T. Taunay, P. Bernage, M. Douay, W. X. Xie, G. Martinelli, P. Niay, J. F. Bayon, E. Delavaque, and H. Poignant, “Ultraviolet-enhanced photosensitivity in cerium-doped aluminosilicate fibers and glasses through high-pressure hydrogen loading,” J. Opt. Soc. Am. B14(4), 912–925 (1997). [CrossRef]
  27. M. Saad, L. R. Chen, and X. Gu, “Highly reflective fiber Bragg gratings inscribed in Ce/Tm co-doped ZBLAN fibers,” IEEE Photon. Technol. Lett.25(11), 1066–1068 (2013). [CrossRef]
  28. Z. Meng, T. Yoshimura, K. Fukue, M. Higashihata, Y. Nakata, N. J. Vasa, and T. Okada, “Large improvement in quantum fluorescence yield of Er3+–doped fluorezirconate and fluoroindate glasses by Ce3+ codoping,” J. Appl. Phys.88(5), 2187–2190 (2000). [CrossRef]
  29. B.-M. Dicks, F. Heine, K. Petermann, and G. Huber, “Characterization of a radiation-hard single-mode Yb-doped fiber amplifier at 1064 nm,” Laser Phys.11, 134–137 (2001).
  30. S. S.-H. Yam, Y. Akasaka, Y. Kubota, R. Huang, D. L. Harris, and J. Pan, “Transient dynamics of fluoride-based high concentration Erbium–Cerium codoped fiber amplifier,” IEEE Photon. Technol. Lett.16(2), 425–427 (2004). [CrossRef]
  31. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett.34(8), 1285–1287 (2009). [CrossRef] [PubMed]
  32. P. Jelger, M. Engholm, L. Norin, and F. Laurell, “Degradation-resistant lasing at 980 nm in a Yb/Ce/Al-doped silica fiber,” J. Opt. Soc. Am. B27(2), 338–342 (2010). [CrossRef]
  33. M. Vivona, S. Girard, C. Marcandella, T. Robin, B. Cadier, M. Cannas, A. Boukenter, and Y. Ouerdane, ““Influence of Ce codoping and H pre-loading on Er/Yb-doped fiber: Radiation response characterized by Confocal Micro-Luminescence,” J. Non-Crystal,” Sol.357, 1963–1965 (2011).
  34. M. Vivona, S. Girard, T. Robin, B. Cadier, L. Vaccaro, M. Cannas, A. Boukenter, and Y. Ouerdane, “Influence of Ce3+ codoping on the photoluminescence excitation channels of phosphosilicate Yb/Er-doped glasses,” IEEE Photon. Technol. Lett.24(6), 509–511 (2012). [CrossRef]
  35. S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, E. Pinsard, A. Boukenter, and Y. Ouerdane, “Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application,” Opt. Express20(8), 8457–8465 (2012). [CrossRef] [PubMed]
  36. A. Winterstein, S. Manning, H. Ebendorff-Heidepriem, and L. Wondraczek, “Luminescence from bismuth-germanate glasses and its manipulation through oxidants,” Opt. Mater. Express2(10), 1320–1328 (2012). [CrossRef]
  37. S. Unger, A. Schwuchow, S. Jetschke, S. Grimm, A. Scheffel, and J. Kirchhof, “Optical properties of cerium-codoped high power laser fibers,” Proc. SPIE8621, 862116 (2013). [CrossRef]
  38. A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express19(7), 6599–6608 (2011). [CrossRef] [PubMed]
  39. K. Farah, A. Mejri, F. Hosni, A. H. Hamzaoui, and B. Boizot, “Formation and decay of colour centres in a silicate glasses exposed to gamma radiation: Application to high-dose dosimetry,” in Current Topics in Ionizing Radiation Research, M. Nenoi, ed. (InTech, 2012).
  40. J. S. Stroud, “Photoionization of Ce3+ in glass,” J. Chem. Phys.35(3), 844–850 (1961). [CrossRef]
  41. J. S. Stroud, “Color centers in a cerium-containing silicate glass,” J. Chem. Phys.37(4), 836–841 (1962). [CrossRef]
  42. J. S. Stroud, “Color-center kinetics in cerium-containing glass,” J. Chem. Phys.43(7), 2442–2450 (1965). [CrossRef]
  43. G. Blasse and A. Bril, “Investigation of some Ce3+ activated phosphors,” J. Chem. Phys.47(12), 5139–5145 (1967). [CrossRef]
  44. G. E. Malashkevich, E. N. Poddenezhny, I. M. Melnichenko, and A. A. Boiko, ““Optical centers of cerium in silica glasses obtained by the sol-gel process,” J. Non-Crystal,” Sol.188, 107–117 (1995).
  45. A. Patra, D. Kundu, and D. Ganguli, “Spectroscopic study of cerium-doped silica gel monoliths and their densified derivatives,” J. Sol-Gel Sci. Technol.9(1), 65–69 (1997). [CrossRef]
  46. S. X. Lian, M. Ren, J. H. Lin, Z. N. Gu, and M. Z. Su, “On the afterglow of the cerium doped silicate glasses,” J. Mater. Sci. Lett.19(18), 1603–1605 (2000). [CrossRef]
  47. G. Q. Xu, Z. X. Zheng, W. M. Tang, and Y. C. Wu, “Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,” J. Lumin.124(1), 151–156 (2007). [CrossRef]
  48. J. Bei, G. Qian, X. Liang, S. Yuan, Y. Yang, and G. Chen, “Optical properties of Ce3+-doped oxide glasses and correlations with optical basicity,” Mater. Res. Bull.42(7), 1195–1200 (2007). [CrossRef]
  49. S. Y. Marzouk and F. M. Ezz-Eldin, “Optical study of Ce3+ ion in gamma-irradiated binary barium-borate glasses,” Phys. B403(18), 3307–3315 (2008). [CrossRef]
  50. R.-X. Xing, Y.-B. Sheng, Z.-J. Liu, H.-Q. Li, Z.-W. Jiang, J.-G. Peng, L.-Y. Yang, J.-Y. Li, and N.-L. Dai, “Investigation on radiation resistance of Er/Ce co-doped silicate glasses under 5 kGy gamma-ray irradiation,” Opt. Mater. Express2(10), 1329–1335 (2012). [CrossRef]
  51. A. Bahadur, Y. Dwivedi, and S. B. Rai, “Optical properties of cerium doped oxyfluoroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.110, 400–403 (2013). [CrossRef] [PubMed]
  52. C. Jiang, Q. Zeng, and F. Gan, “New scincillator: Cerium-doped oxide glass,” Proc. SPIE4134, 329–335 (2000). [CrossRef]
  53. E. E. Trusova, N. M. Bobkova, V. S. Gurin, and E. A. Tyavlovskaya, “Nature of color centers in silicate glasses with additions of cerium and titanium oxides,” Glass and Ceram.66(7-8), 240–244 (2009). [CrossRef]
  54. W.-Y. Cong, S.-M. Li, Y.-J. Wang, L. Tao, X.-Y. Liu, and W.-M. Zheng, “Photoluminescence study of Ce-doped silica films,” J. Lumin.132(1), 161–163 (2012). [CrossRef]
  55. G. P. Singh, P. Kaur, S. Kaur, R. Kaur, and D. P. Singh, “Conversion of Ce3+ to Ce4+ ions after gamma ray irradiation on CeO2-PbO-B2O3 glasses,” Phys. B408, 115–118 (2013). [CrossRef]
  56. D. L. Griscom, M. E. Gingerich, and E. J. Friebele, “Radiation-induced defects in glasses: Origin of power-law dependence of concentration on dose,” Phys. Rev. Lett.71(7), 1019–1022 (1993). [CrossRef] [PubMed]
  57. V. A. Mashkov, W. R. Austin, L. Zhang, and R. G. Leisure, “Fundamental role of creation and activation in radiation-induced defect production in high-purity amorphous SiO2.,” Phys. Rev. Lett.76(16), 2926–2929 (1996). [CrossRef] [PubMed]
  58. D. Griscom, “Fractal kinetics of radiation-induced point-defect formation and decay in amorphous insulators: Application to color centers in silica-based optical fibers,” Phys. Rev. A64, 174201 (2001).
  59. E. M. Dianov, L. S. Kornienko, E. P. Nikulin, A. O. Rybaltovskii, and P. V. Chernov, “Reversible optical bleaching of the induced absorption in fiber-optic waveguides,” Sov. J. Quant. Electron.9(5), 636–637 (1979). [CrossRef]
  60. E. J. Friebele and M. E. Gingerich, “Photobleaching effects in optical fiber waveguides,” Appl. Opt.20(19), 3448–3452 (1981). [CrossRef] [PubMed]
  61. E. M. Dianov, L. S. Kornienko, E. P. Nikulin, A. O. Rybaltovskii, and P. V. Chernov, “Influence of the temperature and optical power level on induced absorption in fiber-optic waveguides of pure quartz glass,” Sov. J. Quant. Electron.11(9), 1171–1177 (1981). [CrossRef]
  62. Y. Zhu, S. Ouyang, S. Gao, and W. Teng, “Luminescence characteristics of Ce3+ doped Ca-Al-Ba glass,” J. Wuhan Univ. Techn.24(5), 815–818 (2009). [CrossRef]
  63. D. Jia, “Relocalization of Ce3+ 5d electrons from host conduction band,” J. Lumin.117(2), 170–178 (2006). [CrossRef]
  64. X. Yue, A. Adibi, T. Hudson, K. Buse, and D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys.87(9), 4051–4055 (2000). [CrossRef]
  65. A. Lin and W.-T. Han, “Recent progress in development and nonlinear optical device application of optical fibers incorporated with noble metal nanoparticles,” Proc. SPIE7095, 70950G(2008). [CrossRef]
  66. L. F. Koao, H. C. Swart, R. I. Obed, and F. B. Dejene, “Synthesis and characterization of Ce3+ doped silica (SiO2) nanoparticles,” J. Lumin.131(6), 1249–1254 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited