OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 3 — Mar. 1, 2014
  • pp: 449–457

Time-domain modeling of dispersive and lossy liquid-crystals for terahertz applications

D. C. Zografopoulos, K. P. Prokopidis, R. Dąbrowski, and R. Beccherelli  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 3, pp. 449-457 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1486 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A numerical framework based on the finite-difference time-domain method is proposed for the rigorous study of electro-optically tunable terahertz devices based on liquid crystals. The formulation accounts for both the liquid-crystal full-tensor anisotropy and the dispersion of its complex refractive indices, which is described via modified Lorentzian terms. Experimentally characterized liquid-crystalline materials in the terahertz spectrum are fitted and modeled in benchmark examples, directly compared with reference analytical or semi-analytical solutions. In addition, the efficiency of broadband time-domain modeling of the proposed technique is also demonstrated by accurately reproducing time-domain spectroscopy measurements.

© 2014 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.4760) Materials : Optical properties
(260.2030) Physical optics : Dispersion
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Liquid Crystals

Original Manuscript: November 26, 2013
Revised Manuscript: December 13, 2013
Manuscript Accepted: December 13, 2013
Published: February 10, 2014

D. C. Zografopoulos, K. P. Prokopidis, R. Dąbrowski, and R. Beccherelli, "Time-domain modeling of dispersive and lossy liquid-crystals for terahertz applications," Opt. Mater. Express 4, 449-457 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Yun-Shik, Principles of Terahertz Science and Technology (Springer, 2008).
  2. E.R. Mueller, “Terahertz radiation sources for imaging and sensing applications,” Photon. Spectra40, 60–69 (2006).
  3. D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012). [CrossRef] [PubMed]
  4. D. C. Zografopoulos and R. Beccherelli, “Long-range plasmonic directional coupler switches controlled by nematic liquid crystals,” Opt. Express21, 8240–8250 (2013). [CrossRef] [PubMed]
  5. D. C. Zografopoulos and R. Beccherelli, “Design of a vertically coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett.102, 101103 (2013). [CrossRef]
  6. N. Vieweg, C. Jansen, and M. Koch, “Liquid crystals and their applications in the THz frequency range,” in “Terahertz spectroscopy and imaging,” vol. 171 of Springer Series in Optical Sciences, K.-E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, eds. (Springer, 2013), pp. 301–326.
  7. N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31, 1312–1320 (2010). [CrossRef]
  8. H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express20, 11899–11905 (2012). [CrossRef] [PubMed]
  9. U. Chodorow, J. Parka, and O. Chojnowska, “Liquid crystal materials in THz technologies,” Photon. Lett. Poland4, 112–114 (2012). [CrossRef]
  10. M. Reuter, K. Garbat, N. Vieweg, B. M. Fischer, R. Dąbrowski, M. Koch, J. Dziaduszek, and S. Urban, “Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides,” J. Mater. Chem.1, 4457–4463 (2013).
  11. M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater.1, 012107 (2013). [CrossRef]
  12. C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett.31, 1112–1114 (2006). [CrossRef] [PubMed]
  13. C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett.33, 1174–1176 (2008). [CrossRef] [PubMed]
  14. S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008). [CrossRef]
  15. T. Kumagai, R. Ito, K. Takeya, H. Yoshida, H. Kubo, A. Fujii, T. Nose, M. Tonouchi, and M. Ozaki, “Tunable terahertz filter using an etalon with a nematic liquid crystal layer and its response speed,” Mol. Cryst. Liq. Cryst.561, 82–88 (2012). [CrossRef]
  16. C.-J. Lin, C.-H. Lin, Y.-T. Li, R.-P. Pan, and C.-L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett.21, 730–732 (2009). [CrossRef]
  17. H. Li, C. Zhu, K. Liu, X. Zhang, F. Ling, T. Zhang, X. Shen, C. Zhang, and S. Ruan, “Terahertz electrically controlled nematic liquid crystal lens,” Infrared Phys. Tech.54, 439–444 (2011). [CrossRef]
  18. B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dąbrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012). [CrossRef]
  19. C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett.102, 151903 (2013). [CrossRef]
  20. D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett.110, 177403 (2013). [CrossRef] [PubMed]
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3, (Artech House, 2005).
  22. N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, “Novel broadband terahertz negative refractive index metamaterials: analysis and experiment,” Prog. Electromagn. Res.64, 205–218 (2006). [CrossRef]
  23. L. Dou and A. R. Sebak, “3D FDTD method for arbitrary anisotropic materials,” Microw. Opt. Techn. Let.48, 2083–2090 (2006). [CrossRef]
  24. E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun.177, 69–77 (2000). [CrossRef]
  25. M. N. Miskiewicz, P. T. Bowen, and M. J. Escuti, “Efficient 3D FDTD analysis of arbitrary birefringent and dichroic media with obliquely incident sources,” Proc. SPIE8255, 82550W (2012). [CrossRef]
  26. G. Gilardi, D. Donisi, R. Beccherelli, and A. Serpengüzel, “Liquid crystal tunable filter based on sapphire microspheres,” Opt. Lett.34, 3253–3255 (2009). [CrossRef] [PubMed]
  27. D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010). [CrossRef]
  28. K. P. Prokopidis, D. C. Zografopoulos, and E. E. Kriezis, “Rigorous broadband investigation of liquid-crystal plasmonic structures using FDTD dispersive-anisotropic models,” J. Opt. Soc. Am. B30, 2722–2730 (2013). [CrossRef]
  29. A. Deinega and S. John, “Effective optical response of silicon to sunlight in the finite-difference time-domain method,” Opt. Lett.37, 112–114 (2012). [CrossRef] [PubMed]
  30. A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A: Mater. Sci. Process.103, 849–853 (2011). [CrossRef]
  31. U. Chodorow, J. Parka, K. Garbat, N. Palka, and K. Czupryński, “Spectral investigation of nematic liquid crystals with high optical anisotropy at THz frequency range,” Phase Transit.85, 337–344 (2012). [CrossRef]
  32. I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express15, 4335–4350 (2007). [CrossRef] [PubMed]
  33. R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multilayer structures,” IEEE J. Select. Top. Quant. Electron.14, 392–398 (2008). [CrossRef]
  34. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol.1, 51–61 (2005). [CrossRef]
  35. A. Vial and T. Laroche, “Description of dispersion of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys.40, 7152–7158 (2007). [CrossRef]
  36. K. P. Prokopidis and D. C. Zografopoulos, “A unified FDTD/PML scheme based on critical points for accurate studies of plasmonic structures,” J. Lightwave Technol.31, 2467–2476 (2013). [CrossRef]
  37. N. Vieweg, M. Shakfa, and M. Koch, “BL037: A nematic mixture with high terahertz birefringence,” Opt. Commun.284, 1887–1889 (2011). [CrossRef]
  38. O. Chojnowska and R. Dąbrowski, “The influence of cyano compound on liquid crystal blue phase range,” Photon. Lett. Poland4, 81–83 (2012). [CrossRef]
  39. MATLAB Release 2012b, The MathWorks, Inc., Natick, Massachusetts, USA ( www.mathworks.com ).
  40. I.-C. Khoo, Liquid Crystals, 2, (Wiley, 2007).
  41. D. W. Berreman, “Liquid-crystal twist cell dynamics with backflow,” J. Appl. Phys.46, 3746–3751 (1975). [CrossRef]
  42. J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Techn. Lett.27, 334–339 (2000). [CrossRef]
  43. N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express20, 28249–28256 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited