OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 3 — Mar. 1, 2014
  • pp: 458–463

Laser operation in Nd:Sc2SiO5 crystal based on transition 4F3/24I9/2 of Nd3+ ions

X. Li, G. Aka, L. H. Zheng, J. Xu, and Q. H. Yang  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 3, pp. 458-463 (2014)
http://dx.doi.org/10.1364/OME.4.000458


View Full Text Article

Enhanced HTML    Acrobat PDF (2444 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser operation based on energy transition 4F3/24I9/2 of Nd3+ ions in 1at.% Nd:Sc2SiO5 (Nd:SSO) crystal is reported. By using output coupler of Toc = 2.5% and 808 nm laser diode pump source, laser operation at 914 nm was preliminarily obtained with output power of 581 mW.

© 2014 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(160.3380) Materials : Laser materials

ToC Category:
Laser Materials

History
Original Manuscript: October 15, 2013
Revised Manuscript: January 12, 2014
Manuscript Accepted: January 13, 2014
Published: February 14, 2014

Citation
X. Li, G. Aka, L. H. Zheng, J. Xu, and Q. H. Yang, "Laser operation in Nd:Sc2SiO5 crystal based on transition 4F3/24I9/2 of Nd3+ ions," Opt. Mater. Express 4, 458-463 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-3-458


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Aka, D. Vivien, and V. Lupei, “Site-selective 900,” Appl. Phys. Lett.85(14), 2685–2687 (2004). [CrossRef]
  2. S. F. A. Kettle, Physical Inorganic Chemistry: a Coordination Chemistry Approach (Spektrum Academic Publishers, 1996,), p. 163.
  3. L. H. Zheng, P. Loiseau, and G. Aka, “Diode-pumped laser operation at 1053 and 900 nm in Sr1−xLax−yNdyMgxAl12−xO19 (Nd:ASL) single crystal,” Laser Phys.23(9), 095802(6pp) (2013). [CrossRef]
  4. P. B. W. Burmester, T. Kellner, E. Heumann, G. Huber, R. Uecker, and P. Reiche, “Blue laser emission at 465 nm by type-I noncritically phase-matched second harmonic generation in Gd1- xYxCa4O(BO3)3,” Laser Phys.10, 441–443 (2000).
  5. V. Lupei, N. Pavel, and T. Taira, “Highly efficient continuous-wave 946-nm Nd:YAG laser emission under direct 885-nm pumping,” Appl. Phys. Lett.81(15), 2677–2679 (2002). [CrossRef]
  6. L. H. Zheng, J. Xu, L. B. Su, H. J. Li, Q. G. Wang, W. Ryba-Romanowski, R. Lisiecki, and F. Wu, “Estimation of low-temperature spectra behavior in Nd-doped Sc2SiO5 single crystal,” Opt. Lett.34(22), 3481–3483 (2009). [CrossRef] [PubMed]
  7. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993). [CrossRef]
  8. L. H. Zheng, G. Aka, A. Ikesue, Y. L. Aung, P. Loiseau, and J. Xu, “Blue laser generated in Nd:YAG core ceramics composites,” 9th Laser Ceramics Symposium, Daejeon, Korea, Dec. 02–06 (2013).
  9. G. A. Kumar, L. R. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004). [CrossRef]
  10. T. Taira, “RE3+-Ion-Doped YAG ceramic lasers,” IEEE J. Sel. Top. Quant.13(3), 798–809 (2007). [CrossRef]
  11. M. Pokhrel, N. Ray, G. A. Kumar, and D. K. Sardar, “Comparative studies of the spectroscopic properties of Nd3+: YAG nanocrystals, transparent ceramic and single crystal,” Opt. Mater. Express2(3), 235–249 (2012). [CrossRef]
  12. M. R. Gaume, Ph.D. thesis, Universite Pierre et Marie Curie-Paris VI, Paris (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited