OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 3 — Mar. 1, 2014
  • pp: 476–485

Spectral asymmetry and deep red photoluminescence in Eu3+-activated Na3YSi3O9 glass ceramics

Guojun Gao and Lothar Wondraczek  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 3, pp. 476-485 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2306 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on photoluminescence from Eu3+-activated Na,Y-silicates of the Na3YSi3O9 type. The effect of structural environment on Eu3+-related emission is considered by comparing a glassy reference host to its crystalline correspondents which are obtained through crystallization of the super-cooled melt. Crystallization is accompanied by a quantitative increase in quantum yield and external efficiency of photoluminescence. At the same time, strong Stark splitting of the emission bands and significant changes in the spectral symmetry of photoemission with a notable relative enhancement of the 5D07F4 relaxation are observed. The results indicate that Eu3+ ions partition on Y3+ lattice sites which undergo changes in coordination, volume and symmetry when moving from glassy to crystalline environment. Potential application of such Eu3+-activated Na3YSi3O9 silicate glass ceramics in light converters is considered.

© 2014 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: December 20, 2013
Revised Manuscript: February 7, 2014
Manuscript Accepted: February 10, 2014
Published: February 19, 2014

Guojun Gao and Lothar Wondraczek, "Spectral asymmetry and deep red photoluminescence in Eu3+-activated Na3YSi3O9 glass ceramics," Opt. Mater. Express 4, 476-485 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Gao, N. Da, S. Reibstein, and L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express18(S4Suppl 4), A575–A583 (2010). [CrossRef] [PubMed]
  2. G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011). [CrossRef]
  3. H. Wen, G. Jia, C.-K. Duan, and P. A. Tanner, “Understanding Eu3+emission spectra in glass,” Phys. Chem. Chem. Phys.12(33), 9933–9937 (2010). [CrossRef] [PubMed]
  4. H. Guo, X. F. Wang, J. D. Chen, and F. Li, “Ultraviolet light induced white light emission in Ag and Eu3+ co-doped oxyfluoride glasses,” Opt. Express18(18), 18900–18905 (2010). [CrossRef] [PubMed]
  5. X. Zhang, A. Marathe, S. Sohal, M. Holtz, M. Davis, L. J. Hope-Weeks, and J. Chaudhuri, “Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+,” J. Mater. Chem.22(13), 6485–6490 (2012). [CrossRef]
  6. Z. Xia, J. Zhuang, and L. Liao, “Novel red-emitting Ba2Tb(BO3)2Cl:Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes,” Inorg. Chem.51(13), 7202–7209 (2012). [CrossRef] [PubMed]
  7. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005). [CrossRef] [PubMed]
  8. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009). [CrossRef]
  9. W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater.23(20), 2300–2305 (2011). [CrossRef] [PubMed]
  10. L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun4, 2047 (2013), doi:. [CrossRef] [PubMed]
  11. L. Wondraczek, S. Krolikowski, and P. Nass, “Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr,Ca) åkermanite–feldspar bi-phasic glass ceramics,” J. Mater. Chem. C1(26), 4078–4086 (2013). [CrossRef]
  12. M. Peng, Z. Pei, G. Hong, and Q. Su, “The reducing of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem.13(5), 1202–1205 (2003). [CrossRef]
  13. M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→ Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett.371(1-2), 1–6 (2003). [CrossRef]
  14. M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010). [CrossRef] [PubMed]
  15. E. Doris, “Photoluminescence in glasses and glass ceramics,” IOP Conf. Series Mater. Sci.Eng. 2, 012001 (2009).
  16. G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem.22(6), 2582–2588 (2012). [CrossRef]
  17. G. Gao, M. Peng, and L. Wondraczek, “Temperature dependence and quantum efficiency of ultrabroad NIR photoluminescence from Ni2+ centers in nanocrystalline Ba-Al titanate glass ceramics,” Opt. Lett.37(7), 1166–1168 (2012). [CrossRef] [PubMed]
  18. G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Dual-mode photoluminescence from nanocrystalline Mn2+-doped Li,Zn-aluminosilicate glass ceramics,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52, 59–63 (2011).
  19. G. Gao and L. Wondraczek, “Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics,” Opt. Mater. Express3(5), 633–644 (2013). [CrossRef]
  20. G. Partridge, “Glass-ceramics with unusual electrical properties,” Adv. Mater.4(10), 668–673 (1992) [CrossRef]
  21. C. H. Kim, H. L. Park, and S. Mho, “Photoluminescence of Eu3+ and Bi3+ in Na3YSi3O9,” Solid State Commun.101(2), 109–113 (1997). [CrossRef]
  22. Y. Wen, Y. Wang, F. Zhang, B. Liu, Z. Zhao, J. Zhang, and Z. Yang, “Intense red-emitting NaYSiO4: Eu3+, Mo6+ phosphors for white light-emitting diodes,” J. Electrochem. Soc.158(8), J250–J254 (2011). [CrossRef]
  23. D. Ananias, J. P. Rainho, A. Ferreira, M. Lopes, C. M. Morais, J. Rocha, and L. D. Carlos, “Synthesis and Characterization of Er(III) and Y(III) Sodium Silicates: Na3ErSi3O9, a New Infrared Emitter,” Chem. Mater.14(4), 1767–1772 (2002). [CrossRef]
  24. N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett.86(21), 211905 (2005). [CrossRef]
  25. É. A. Kuz’min, B. A. Maksimov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of synthetic Na, Y-orthogermanate, NaYGeO4,” J. Struct. Chem.11(1), 152–154 (1970). [CrossRef]
  26. Z. Xia, J. Zhou, and Z. Mao, “Near UV-pumped green-emitting Na3(Y,Sc)Si3O9:Eu2+ phosphor for white-emitting diodes,” J. Mater. Chem. C1(37), 5917–5924 (2013). [CrossRef]
  27. J. M. Buerger, G. E. Klein, and G. E. Hamburger, “The structure of Nepheline,” Am. Mineral.32, 197 (1947).
  28. J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta57(16), 3961–3970 (1993). [CrossRef]
  29. J. A. Duffy, “Optical basicity analysis of glasses containing trivalent scandium, yttrium, gallium and indium,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B46, 500–504 (2005).
  30. G. Gao, R. Meszaros, M. Peng, and L. Wondraczek, “Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics,” Opt. Express19(S3Suppl 3), A312–A318 (2011). [CrossRef] [PubMed]
  31. Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The Effect of Fluorine Anions on the Luminescent Properties of Eu-Doped Oxyfluoride Aluminosilicate Glasses,” J. Am. Ceram. Soc.93(10), 3095–3098 (2010). [CrossRef]
  32. G. Gao and L. Wondraczek, “Heavily Eu3+-doped boroaluminosilicate glasses for UV/blue-to-red photoconversion with high quantum yield,” J. Mater. Chem. C2(4), 691–695 (2013). [CrossRef]
  33. M. A. Kim, S. J. Lee, J. Jung, and J. K. Park, “A facile reduction of Eu3+ to Eu2+ in gadolinium monosulfide nanoparticles using a mixed solvent of oleic acid/hexadecylamine,” Chem. Commun. (Camb.)48(6), 904–906 (2011). [CrossRef] [PubMed]
  34. P. Ghosh, S. Tang, and A.-V. Mudring, “Efficient quantum cutting in hexagonal NaGdF4:Eu3+ nanorods,” J. Mater. Chem.21(24), 8640–8644 (2011) . [CrossRef]
  35. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976). [CrossRef]
  36. M. R. Cicconi, G. Giuli, E. Paris, P. Courtial, and D. B. Dingwell, “Europium structural environment in a sodium disilicate glass by XAS,” J. Non-Cryst. Solids362, 162–168 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited