OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 3 — Mar. 1, 2014
  • pp: 486–498

3D optical waveguides produced by two photon photopolymerisation of a flexible silanol terminated polysiloxane containing acrylate functional groups

Rachel Woods, Sonja Feldbacher, David Zidar, Gregor Langer, Valentin Satzinger, Volker Schmidt, Niklas Pucher, Robert Liska, and Wolfgang Kern  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 3, pp. 486-498 (2014)
http://dx.doi.org/10.1364/OME.4.000486


View Full Text Article

Enhanced HTML    Acrobat PDF (2693 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical waveguides are becoming increasingly important in the developing area of broadband communications. The field of electronics is advancing rapidly, leading to further demands for larger data storage, smaller components and a better design of integrated optical circuits. The integration of optical interconnects on printed circuit boards (PCBs) requires precise technologies to make this emerging field possible. A promising new microfabrication technique, two-photon photopolymerisation (2PP) can be used to produce three dimensional structures in the sub-micron region. Near-infrared lasers can be used to create 3D optical waveguides by initiating the photopolymerisation of high refractive index monomers in polymeric matrix materials. Terminal silanol groups are intermediates for room temperature vulcaniseable (RTV) silicones and can be cross linked with functional silanes to produce flexible, transparent polymeric materials with high thermal stabilities. A silanol terminated polysiloxane; cross linked with a methyl substituted acryloxy silane has been developed as a suitable material for the fabrication of optical waveguides by two-photon absorption (TPA). A higher refractive index is achieved upon polymerisation of the acrylate functional groups. The material has been shown to be suitable in the fabrication of 3D optical waveguides with a high refractive index contrast. The cured material is fully flexible and exhibits high thermal stability and optical transparency. The material was characterised by Fourier transform infrared spectroscopy (FT-IR), simultaneous thermal analysis coupled with mass spectrometry (STA-MS) and near-infrared spectroscopy (NIRS). Waveguides were observed by phase contrast microscopy, cut back measurements and were additionally directly integrated onto specially designed PCBs by correctly positioning waveguide bundles between optoelectronic components using TPA.

© 2014 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(250.0250) Optoelectronics : Optoelectronics
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:
Materials for Integrated Optics

History
Original Manuscript: October 14, 2013
Revised Manuscript: January 29, 2014
Manuscript Accepted: February 5, 2014
Published: February 21, 2014

Citation
Rachel Woods, Sonja Feldbacher, David Zidar, Gregor Langer, Valentin Satzinger, Volker Schmidt, Niklas Pucher, Robert Liska, and Wolfgang Kern, "3D optical waveguides produced by two photon photopolymerisation of a flexible silanol terminated polysiloxane containing acrylate functional groups," Opt. Mater. Express 4, 486-498 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-3-486


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol.14(10), 2338–2343 (1996). [CrossRef]
  2. C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE4942, 222–235 (2003). [CrossRef]
  3. D. A. B. Miller, “Physical Reasons for Optical Interconnection,” Special Issue on Smart Pixels, J. Optoelectronics11(3), 155–168 (1997).
  4. R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE7053, 70530B (2008). [CrossRef]
  5. B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett.37(17), 1079 (2001). [CrossRef]
  6. M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt.27(9), 1742–1751 (1988). [CrossRef] [PubMed]
  7. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, process, and devices,” Adv. Mater.14(19), 1339–1365 (2002). [CrossRef]
  8. R. A. Norwood, R. Y. Gao, J. Shama, and C. C. Teng, “Design, manufacturing, and testing of planar optical waveguide devices,” SPIE, Bellingham, MA19, 4439 (2001).
  9. G.L Bona, B.J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann and F. Horst “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. of SPIE. 5453 (14) (2004).
  10. K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. (Berl.)80(3), 621–626 (2005). [CrossRef]
  11. A. Camposeo, L. Persano, and D. Pisigano, “Light emitting electrospun nanofibers for nanophotonics and optoelectronics,” Macromol. Mater. Eng.298(5), 487–503 (2013). [CrossRef]
  12. H. B. Sun and S. Kawata, “Two photon photopolymerization and 3D lithographic microfabrication,” APS170, 169–273 (2004).
  13. M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, R. Gadonas, J. S. Juodazis and A. Piskarskas, “Femtosecond laser fabrication of hybrid micro-optical elements and their integration on fiber tip,” SPIE 1176 (2010).
  14. H.-B. Sun and S. Kawata, “Two-Photon Laser Precision Microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol.21(3), 624–633 (2003). [CrossRef]
  15. S. Wu, J. Serbin, and M. Gu, “„Two photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem.181(1), 1–11 (2006). [CrossRef]
  16. M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater.27(3), 359–364 (2004). [CrossRef]
  17. R. Buividas, S. Rekstyte, M. Malinauskas, and S. Juadkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express3(10), 1674–1686 (2013). [CrossRef]
  18. A. Zakery and S. R. Elliott, “Optical properties an applications of chalcogenides glasses: A review,” J. Non-Crsyt. Solids330, 1–12 (2003).
  19. M. Kagami, H. Ito, T. Ichikawa, S. Kato, M. Matsuda, and N. Takahashi, “Fabrication of large-core, high-Δ optical waveguides in polymers,” Appl. Opt.34(6), 1041–1046 (1995). [CrossRef] [PubMed]
  20. G. Langer, I. Muehlbacher, S. Pichler, H. Stahr, F. Stelzer and J. Sassmannshausen, PCT Int. Appl. WO 2009021256 A1 20090219 (2009).
  21. S. Pichler, PhD Thesis, TU Graz (2007).
  22. R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).
  23. R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci.254(4), 836–840 (2007). [CrossRef]
  24. R. Houbertz, “Laser interaction in sol–gel based materials 3-D lithography for photonic applications,” Appl. Surf. Sci.247(1–4), 504–512 (2005). [CrossRef]
  25. V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE6476, 64760P (2007).
  26. S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds,” Opt. Express21(14), 17028–17041 (2013). [CrossRef] [PubMed]
  27. C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).
  28. J. P. Fouassier, Photoinitiation, Photopolymerization and Photocuring (Hanser, 1995).
  29. Morrison and Boyd, Organic Chemistry, Fourth Edition (Prentice Hall, 1983), p. 961.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited