OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 3 — Mar. 1, 2014
  • pp: 499–508

Annealing of UV Ar+ and ArF excimer laser fabricated Bragg gratings: SMF-28e fiber

Georgios Violakis and Hans G. Limberger  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 3, pp. 499-508 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2095 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fiber Bragg gratings fabricated in pristine SMF-28e fibers using pulsed ArF-excimer and cw 244-nm Ar+ laser were annealed using tempering rates from 0.0038 to 0.25 K/s. Demarcation energy mapping allowed for the determination of the frequency factors and the master curves for the SMF-28e fiber under different irradiation conditions. A Gaussian decomposition of the underlying energy distribution revealed several individual activation energy distributions characteristic for the fiber with peak energies and widths that were independent of the laser used. From a fit of the integrated Gaussian distributions to the master curves the relative contributions of the individual energy distributions that appeared in both irradiation conditions were calculated. The difference in the activation energy spectra obtained from the two laser irradiations is explained by the relative contributions of the individual distributions that differ. Using the analytical description of the master curve, thermal stability maps were obtained.

© 2014 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.3738) Fiber optics and optical communications : Fiber Bragg gratings, photosensitivity

ToC Category:
Fiber Materials

Original Manuscript: December 3, 2013
Revised Manuscript: February 13, 2014
Manuscript Accepted: February 14, 2014
Published: February 21, 2014

Georgios Violakis and Hans G. Limberger, "Annealing of UV Ar+ and ArF excimer laser fabricated Bragg gratings: SMF-28e fiber," Opt. Mater. Express 4, 499-508 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Vand, “A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum,” Proc. Phys. Soc. A55(3), 222–246 (1943). [CrossRef]
  2. W. Primak, “Kinetics of processes distributed in activation energy,” Phys. Rev.100(6), 1677–1689 (1955). [CrossRef]
  3. W. Primak, “Large temperature range annealing,” J. Appl. Phys.31(9), 1524–1533 (1960). [CrossRef]
  4. W. Primak, The compacted states of vitreous silica, Studies in radiation effects in solids (Gordon & Breach, New York, 1975), Vol. 4.
  5. W. Primak, H. Szymanski, and D. Keiffer, “Frequency factors for annealing fast-neutron induced density changes in vitreous silica,” J. Appl. Phys.32(4), 660–668 (1961). [CrossRef]
  6. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys.76(1), 73–80 (1994). [CrossRef]
  7. J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys.88(2), 1050–1055 (2000). [CrossRef]
  8. Y. H. Shen, J. L. He, Y. Q. Qiu, W. Z. Zhao, S. Y. Chen, T. Sun, and K. T. V. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability,” J. Opt. Soc. Am. B24(3), 430–438 (2007). [CrossRef]
  9. S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing of UV-induced fiber gratings written in Ge-doped fibers: investigation of dose and strain effects,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: OSA Topical Meeting (OSA, 2003), paper MD31.
  10. C. Ban, H. G. Limberger, V. M. Mashinsky, and E. M. Dianov, “Photosensitivity and stress changes of Ge-free Bi-Al doped silica optical fibers under ArF excimer laser irradiation,” Opt. Express19(27), 26859–26865 (2011). [CrossRef] [PubMed]
  11. H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett.46(5), 363–365 (2010). [CrossRef]
  12. G. Violakis, P. Saffari, H. G. Limberger, V. M. Mashinsky, and E. M. Dianov, “Thermal decay of UV Ar+ and ArF excimer laser fabricated Bragg gratings in SMF-28e and Bi-Al-doped optical fiber,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP) (OSA, 2012), paper BM4D.6.
  13. M. J. Lu Valle, L. R. Copeland, S. Kannan, J. B. Judkins, and P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J.3(July-September), 139–147 (1998).
  14. D. P. Hand and P. S. J. Russell, “Photoinduced refractive-index changes in germanosilicate fibers,” Opt. Lett.15(2), 102–104 (1990). [CrossRef] [PubMed]
  15. S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci.60(3), 2015–2036 (2013). [CrossRef]
  16. H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996). [CrossRef]
  17. M. Fokine, “Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers,” Opt. Lett.27(22), 1974–1976 (2002). [CrossRef] [PubMed]
  18. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B19(8), 1759–1765 (2002). [CrossRef]
  19. J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4(09052), 1–7 (2009).
  20. F. Dürr, H. G. Limberger, R. P. Salathé, S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing-induced stress changes in UV-irradiated germanium-doped fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: OSA Topical Meeting (BGPP), 2005), paper 396–398.
  21. Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledoux, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol.8(12), 1799–1802 (1990). [CrossRef]
  22. G. Violakis, H. G. Limberger, V. M. Mashinsky, and E. M. Dianov, “Fabrication and thermal decay of fiber Bragg gratings in pristine and H2-loaded Bi-Al co-doped optical fibers,” Opt. Express19(26), B350–B355 (2011). [CrossRef] [PubMed]
  23. P. I. Gnusin, S. A. Vasilev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron.40(10), 879–886 (2010). [CrossRef]
  24. M. J. Lu Valle, B. G. Lefevre, and S. Kannan, Design and Analysis of Accelerated Tests for Mission Critical Reliability (Chapman & Hall/CRC, 2004).
  25. L. Nuccio, S. Agnello, and R. Boscaino, “Role of H2O in the thermal annealing of the Eγ′ center in amorphous silicon dioxide,” Phys. Rev. B79(12), 125205 (2009). [CrossRef]
  26. T. E. Tsai, G. M. Williams, and E. J. Friebele, “Index structure of fiber Bragg gratings in Ge-SiO2 fibers,” Opt. Lett.22(4), 224–226 (1997). [CrossRef] [PubMed]
  27. D. Razafimahatratra, P. Niay, M. Douay, B. Poumellec, and I. Riant, “Comparison of isochronal and isothermal decays of bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber,” Appl. Opt.39(12), 1924–1933 (2000). [CrossRef] [PubMed]
  28. S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol.15(8), 1470–1477 (1997). [CrossRef]
  29. S. Pal, J. Mandal, T. Sun, and K. T. V. Grattan, “Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped fiber Bragg grating,” Appl. Opt.42(12), 2188–2197 (2003). [CrossRef] [PubMed]
  30. S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Bragg gratings written in Sn-Er-Ge-codoped silica fiber: investigation of photosensitivity, thermal stability, and sensing potential,” J. Opt. Soc. Am. A21(8), 1503–1511 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited