OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 3 — Mar. 1, 2014
  • pp: 509–517

Thermal UV treatment on SU-8 polymer for integrated optics

Xi-Bin Wang, Jian Sun, Chang-Ming Chen, Xiao-Qiang Sun, Fei Wang, and Da-Ming Zhang  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 3, pp. 509-517 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2245 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a simple and low-cost method to fabricate SU-8-based polymer waveguide devices. The influence of hard-baking temperature on SU-8 polymer treated with or without UV radiation was investigated in detail. Based on these properties, the straight type, Y branch type, March-Zehnder (M-Z) type and 1 × 4 splitter waveguides were successfully fabricated. And a polymeric thermal-optic (TO) switch with M-Z type waveguide was also fabricated by this method. The device exhibits low power consumption of less than 6.4 mW, fast rise time of about 149.3 µs and fast fall time of about 139.3 µs. The experimental results showed that this method can bypass the need for complex lithography and provide high resolution and fine waveguide quality desired for TO switches as well as other planar lightwave devices.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.4890) Materials : Organic materials
(260.7190) Physical optics : Ultraviolet
(160.5335) Materials : Photosensitive materials
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Materials for Integrated Optics

Original Manuscript: November 20, 2013
Revised Manuscript: January 28, 2014
Manuscript Accepted: February 4, 2014
Published: February 24, 2014

Xi-Bin Wang, Jian Sun, Chang-Ming Chen, Xiao-Qiang Sun, Fei Wang, and Da-Ming Zhang, "Thermal UV treatment on SU-8 polymer for integrated optics," Opt. Mater. Express 4, 509-517 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllylä, “Highly sensitive biosensor based on UV-imprinted layered polymeric-inorganic composite waveguides,” Opt. Express20(18), 20309–20317 (2012). [CrossRef] [PubMed]
  2. B. Y. Fan, F. Liu, Y. X. Li, Y. D. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett.100(11), 111108 (2012). [CrossRef]
  3. S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, G. S. Son, D. H. Yoon, S.-D. Lee, and H.-Y. Lee, “The fabrication of polymer-based evanescent optical waveguide for biosensing,” Appl. Surf. Sci.255(10), 5466–5470 (2009). [CrossRef]
  4. Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Appl. Phys. Lett.94(21), 213513 (2009). [CrossRef]
  5. K.-L. Lei, C.-F. Chow, K.-C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, “Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers,” J. Mater. Chem.20(35), 7526–7529 (2010).
  6. A. Kocabas and A. Aydinli, “Polymeric waveguide Bragg grating filter using soft lithography,” Opt. Express14(22), 10228–10232 (2006). [CrossRef] [PubMed]
  7. B. Bêche, P. Papet, D. Debarnot, E. Gaviot, J. Zyss, and F. Poncin-Epaillard, “Fluorine plasma treatment on SU-8 polymer for integrated optics,” Opt. Commun.246(1–3), 25–28 (2005). [CrossRef]
  8. X. Wang, J. Meng, X. Sun, T. Yang, J. Sun, C. Chen, C. Zheng, and D. Zhang, “Inductively coupled plasma etching to fabricate sensing window for polymer waveguide biosensor application,” Appl. Surf. Sci.259(15), 105–109 (2012). [CrossRef]
  9. L. Jiang, K. P. Gerhardt, B. Myer, Y. Zohar, and S. Pau, “Evanescent-wave spectroscopy using an SU-8 waveguide for rapid quantitative detection of biomolecules,” J. Microelectromech. Syst.17(6), 1495–1500 (2008). [CrossRef]
  10. B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightwave Technol.27(18), 4091–4096 (2009). [CrossRef]
  11. X. Zhai, J. Li, S. Liu, X. Liu, D. Zhao, F. Wang, D. Zhang, G. Qin, and W. Qin, “Enhancement of 1.53 µm emission band in NaYF4:Er3+,Yb3+,Ce3+ nanocrystals for polymer-based optical waveguide amplifiers,” Opt. Mater. Express3(2), 270–277 (2013). [CrossRef]
  12. C. Liu, “Recent developments in polymer MEMS,” Adv. Mater.19(22), 3783–3790 (2007). [CrossRef]
  13. M. Nordström, D. A. Zauner, A. Boisen, and J. Hübner, “Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications,” J. Lightwave Technol.25(5), 1284–1289 (2007). [CrossRef]
  14. Y. Wang, J.-H. Pai, H.-H. Lai, C. E. Sims, M. Bachman, G. P. Li, and N. L. Allbritton, “Surface graft polymerization of SU-8 for bio-MEMS application,” J. Micromech. Microeng.17(7), 1371–1380 (2007). [CrossRef]
  15. C.-S. Huang and W.-C. Wang, “Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding,” Appl. Opt.47(25), 4540–4547 (2008). [CrossRef] [PubMed]
  16. B. Yang, Y. P. Zhu, Y. Q. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, “Compact arrayed waveguide grating devices based on small SU-8 strip waveguides,” J. Lightwave Technol.29(13), 2009–2014 (2011). [CrossRef]
  17. C. Chen, X. Sun, D. Zhang, Z. Shan, S.-Y. Shi, and D. Zhang, “Dye-doped polymeric planar waveguide devices based on a thermal UV-bleaching technique,” Opt. Laser Technol.41(4), 495–498 (2009). [CrossRef]
  18. R. Singhal, M. N. Satyanarayan, and S. Pal, “Fabrication of monomode channel waveguides in photosensitive polymer on optical adhesive,” Opt. Eng.50(9), 094601 (2011). [CrossRef]
  19. B. H. Ong, X. Yuan, and S. C. Tjin, “Adjustable refractive index modulation for a waveguide with SU-8 photoresist by dual-UV exposure lithography,” Appl. Opt.45(31), 8036–8039 (2006). [CrossRef] [PubMed]
  20. B. H. Ong, X. C. Yuan, S. H. Tao, and S. C. Tjin, “Photothermally enabled lithography for refractive-index modulation in SU-8 photoresist,” Opt. Lett.31(10), 1367–1369 (2006). [CrossRef] [PubMed]
  21. M. K. Gunde, N. Hauptman, M. Maček, and M. Kunaver, “The influence of hard-baking temperature applied for SU8 sensor layer on the sensitivity of capacitive chemical sensor,” Appl. Phys., A Mater. Sci. Process.95(3), 673–680 (2009). [CrossRef]
  22. B. Y. Shew, C. H. Kuo, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Actuators A Phys.120(2), 383–389 (2005). [CrossRef]
  23. L. Gao, J. Sun, X. Sun, C. Kang, Y. Yan, and D. Zhang, “Low switching power 2×2 thermal-optic switch using direct ultraviolet photolithography process,” Opt. Commun.282(20), 4091–4094 (2009). [CrossRef]
  24. A. M. Al-Hetar, A. B. Mohammad, A. S. M. Supa’at, and Z. A. Shamsan, “MMI-MZI polymer thermal-optic switch with a high refractive index contrast,” J. Lightwave Technol.29(2), 171–178 (2011). [CrossRef]
  25. Z. Cao, Y. Yan, J. Meng, L. Jin, and D. Zhang, “Low power consumption thermal-optic switch based on DR1/PMMA,” Microw. Opt. Technol. Lett.54(9), 2163–2165 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited