OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 3 — Mar. 1, 2014
  • pp: 518–524

Multi-color light emissions from mesoporous silica particles embedded with Ga2O3 nanocrystals

Yanhua Zong, Xiangeng Meng, Koji Fujita, and Katsuhisa Tanaka  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 3, pp. 518-524 (2014)
http://dx.doi.org/10.1364/OME.4.000518


View Full Text Article

Enhanced HTML    Acrobat PDF (1495 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on novel light–emitting properties from monodispersed mesoporous silica particles embedded with β–Ga2O3 nanocrystals that were fabricated through a chemical approach followed by thermal annealing in specific atmosphere. The emission spectrum of such nanocomposites consists of several sharp peaks where the dominant one regularly shifts with variation of the excitation wavelength, leading to observation of multiple–color light emissions ranging from blue, green, to white light wavelength regions. We suggest that the donor levels created by oxygen vacancy while multiple acceptor levels induced by gallium vacancy or gallium oxide vacancy account for the emission features of multiple bands.

© 2014 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(260.3800) Physical optics : Luminescence
(160.4236) Materials : Nanomaterials

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: January 10, 2014
Revised Manuscript: February 13, 2014
Manuscript Accepted: February 16, 2014
Published: February 24, 2014

Citation
Yanhua Zong, Xiangeng Meng, Koji Fujita, and Katsuhisa Tanaka, "Multi-color light emissions from mesoporous silica particles embedded with Ga2O3 nanocrystals," Opt. Mater. Express 4, 518-524 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-3-518


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007). [CrossRef] [PubMed]
  2. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271(5251), 933–937 (1996). [CrossRef]
  3. S. Alkis, F. B. Oruc, B. Ortac, A. C. Kosger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt.14(12), 125001 (2012). [CrossRef]
  4. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science281(5385), 2013–2016 (1998). [CrossRef] [PubMed]
  5. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012). [CrossRef] [PubMed]
  6. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light–emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994). [CrossRef]
  7. C. Li and N. Murase, “Synthesis of highly luminescent glasses incorporating CdTe nanocrystals through sol-gel processing,” Langmuir20(1), 1–4 (2004). [CrossRef] [PubMed]
  8. X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater.24(1), 13–33 (2012). [CrossRef] [PubMed]
  9. H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008). [CrossRef] [PubMed]
  10. X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications,” Chem. Mater.22(11), 3383–3388 (2010). [CrossRef]
  11. X. T. Zhou, F. Heigl, J. Y. P. Ko, M. W. Murphy, J. G. Zhou, T. Regier, R. I. R. Blyth, and T. K. Sham, “Origin of luminescence from Ga2O3 nanostructures studied using x–ray absorption and luminescence spectroscopy,” Phys. Rev. B75(12), 125303 (2007). [CrossRef]
  12. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky Barrier Diodes Fabricated by Using Single–Crystal β–Ga2O3 (010) substrate,” IEEE Electron Device Lett.34, 493 (2013). [CrossRef]
  13. A. Trinchi, W. Wlodarski, and Y. X. Li, “Hydrogen sensitive GA2O3 Schottky diode sensor based on SiC,” Sens. Actuators B Chem.100(1-2), 94–98 (2004). [CrossRef]
  14. S. Penner, H. Lorenz, W. Jochum, M. Stoger-Pollach, D. Wang, C. Rameshan, and B. Klötzer, “Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects,” Appl. Catal. A358(2), 193–202 (2009). [CrossRef]
  15. K. W. Chang and J. J. Wu, “Low–temperature growth of well–aligned β–Ga2O3 nanowires from a single–source organometallic precursor,” Adv. Mater.16(6), 545–549 (2004). [CrossRef]
  16. C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β–Ga2O3 nanowires,” Appl. Phys. Lett.78(21), 3202 (2001). [CrossRef]
  17. T. Chen and K. Tang, “γ–Ga2O3 quantum dots with visible blue–green light emission property,” Appl. Phys. Lett.90(5), 053104 (2007). [CrossRef]
  18. Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu, “Luminescence emission originating from nitrogen doping of β–Ga2O3 nanowires,” Phys. Rev. B69(7), 075304 (2004). [CrossRef]
  19. S. C. Vanithakumari and K. K. Nanda, “A one–step method for the growth of Ga2O3–nanorod–based white–light–emitting phosphors,” Adv. Mater.21(35), 3581–3584 (2009). [CrossRef]
  20. T. Wang, S. S. Farvid, M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc.132(27), 9250–9252 (2010). [CrossRef] [PubMed]
  21. I. I. Slowing, B. G. Trewyn, S. Giri, and V. S. Y. Lin, “Mesoporous silica nanoparticles for drug delivery and biosensing applications,” Adv. Funct. Mater.17(8), 1225–1236 (2007). [CrossRef]
  22. T. Nakamura, Y. Yamada, H. Yamada, and K. Yano, “A novel route to luminescent opals for controlling spontaneous emission,” J. Mater. Chem.19(37), 6699 (2009). [CrossRef]
  23. H. Yamada, T. Nakamura, Y. Yamada, and K. Yano, “Colloidal–crystal laser using monodispersed mesoporous silica spheres,” Adv. Mater.21(41), 4134–4138 (2009). [CrossRef]
  24. J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010). [CrossRef] [PubMed]
  25. M. Xiao, H. Chen, T. Ming, L. Shao, and J. Wang, “Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres,” ACS Nano4(11), 6565–6572 (2010). [CrossRef] [PubMed]
  26. K. Yano and K. Fukushima, “Synthesis of mono–dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactant,” J. Mater. Chem.14(10), 1579 (2004). [CrossRef]
  27. H. Wang, Y. He, W. Chen, Y. W. Zeng, K. Stahl, T. Kikegawa, and J. Z. Jiang, “High-pressure behavior of β–Ga2O3 nanocrystals,” J. Appl. Phys.107(3), 033520 (2010). [CrossRef]
  28. M. Ristić, S. Popović, and S. Musić, “Application of sol-gel method in the synthesis of gallium (Ш) –oxide,” Mater. Lett.59(10), 1227–1233 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited