OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 3 — Mar. 1, 2014
  • pp: 525–540

Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses

M. Olivier, J.C. Tchahame, P. Němec, M. Chauvet, V. Besse, C. Cassagne, G. Boudebs, G. Renversez, R. Boidin, E. Baudet, and V. Nazabal  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 3, pp. 525-540 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2086 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Chalcogenide glasses from (GeSe2)100-x(Sb2Se3)x system were synthesized, with x varying from 5 to 70, in order to evaluate the influence of antimony selenide addition on nonlinear optical properties and photosensitivity. Nonlinear refractive index and two photon absorption coefficients were measured both at 1064 nm in picosecond regime using the Z-scan technique and at 1.55 µm in femtosecond regime using an original method based on direct analysis of beam profile change while propagating in the chalcogenide glasses. The study of their photosensitivity at 1.55 μm revealed highly glass composition dependent behavior and quasi-photostable compositions have been identified in femtosecond regime. To better understand these characteristics, the evolution of the glass transition temperature, density and structure with the chemical composition were determined.

© 2014 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4760) Materials : Optical properties
(190.4400) Nonlinear optics : Nonlinear optics, materials
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Glass and Other Amorphous Materials

Original Manuscript: December 23, 2013
Revised Manuscript: February 18, 2014
Manuscript Accepted: February 19, 2014
Published: February 25, 2014

M. Olivier, J.C. Tchahame, P. Němec, M. Chauvet, V. Besse, C. Cassagne, G. Boudebs, G. Renversez, R. Boidin, E. Baudet, and V. Nazabal, "Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses," Opt. Mater. Express 4, 525-540 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B15(12), 2946–2950 (1998). [CrossRef]
  2. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys.44(6), 475–588 (1995). [CrossRef]
  3. N. Hô, J. M. Laniel, R. Vallée, and A. Villeneuve, “Photosensitivity of As2S3 chalcogenide thin films at 1.5 microm,” Opt. Lett.28(12), 965–967 (2003). [CrossRef] [PubMed]
  4. P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express18(22), 22944–22957 (2010). [CrossRef] [PubMed]
  5. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett.25(4), 254–256 (2000). [CrossRef] [PubMed]
  6. C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids62(8), 1435–1440 (2001). [CrossRef]
  7. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003). [CrossRef]
  8. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008). [CrossRef]
  9. S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News19(2), 18–23 (2008). [CrossRef]
  10. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  11. C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett.36(15), 2818–2820 (2011). [CrossRef] [PubMed]
  12. T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett.36(5), 710–712 (2011). [CrossRef] [PubMed]
  13. M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010). [CrossRef]
  14. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron.27(6), 1296–1309 (1991). [CrossRef]
  15. M. Sheik-Bahae and E. W. Van Stryland, “Optical nonlinearities in the transparency region of bulk semiconductors,” in “Nonlinear Optics in Semiconductors I,” vol. 58 of Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Elsevier, 1998), chap. 4, pp. 257–318.
  16. S. Kasap and P. Capper, eds., Springer Handbook of Electronic and Photonic Materials (Springer, 2006).
  17. K. Tanaka, “Nonlinear optics in glasses: How can we analyze?” J. Phys. Chem. Solids68(5-6), 896–900 (2007). [CrossRef]
  18. H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc.73(6), 1794–1796 (1990). [CrossRef]
  19. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002). [CrossRef]
  20. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002). [CrossRef] [PubMed]
  21. T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids257, 353–360 (1999). [CrossRef]
  22. G. Lenz and S. Spalter, “Chalcogenide glasses,” Nonlinear Photonic Crystals10, 255–267 (2003). [CrossRef]
  23. F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998). [CrossRef]
  24. S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun.242(1-3), 313–319 (2004). [CrossRef]
  25. J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931–6933 (2004). [CrossRef]
  26. L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009). [CrossRef]
  27. R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids357(19-20), 3454–3460 (2011). [CrossRef]
  28. M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic Publishers, Dordrecht, 2000).
  29. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B11(6), 1009–1017 (1994). [CrossRef]
  30. G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys.105(10), 103106 (2009). [CrossRef]
  31. G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun.5(2), 113–117 (1967). [CrossRef]
  32. M. Wihl, M. Cardona, and J. Tauc, “Raman scattering in amorphous Ge and III–V compounds,” J. Non-Cryst. Solids8–10, 172–178 (1972). [CrossRef]
  33. T. Fukunaga, Y. Tanaka, and K. Murase, “Glass formation and vibrational properties in the (Ge, Sn)-Se system,” Solid State Commun.42(7), 513–516 (1982). [CrossRef]
  34. K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids59–60(Part 2), 883–886 (1983). [CrossRef]
  35. S. Sugai, “Stochastic random network model in Ge and Si chalcogenide glasses,” Phys. Rev. B35(3), 1345–1361 (1987). [CrossRef] [PubMed]
  36. O. Matsuda, K. Inoue, and K. Murase, “Resonant Raman study on crystalline GeSe2 in relation to amorphous states,” Solid State Commun.75(4), 303–308 (1990). [CrossRef]
  37. K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B60(22), 14985–14989 (1999). [CrossRef]
  38. L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids66(10), 1788–1794 (2005). [CrossRef]
  39. J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B28(8), 4444–4453 (1983). [CrossRef]
  40. V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010). [CrossRef]
  41. L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids352(50-51), 5413–5420 (2006). [CrossRef]
  42. P. Nemec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids270(1-3), 137–146 (2000). [CrossRef]
  43. V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol.8(5), 990–1000 (2011). [CrossRef]
  44. Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett.57(5-6), 1025–1028 (2003). [CrossRef]
  45. L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys.97(1), 64–70 (2006). [CrossRef]
  46. P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009). [CrossRef]
  47. L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull.42(12), 2107–2116 (2007). [CrossRef]
  48. J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater.22(4), 335–343 (2003). [CrossRef]
  49. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt.37(3), 546–550 (1998). [CrossRef] [PubMed]
  50. G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun.219(1-6), 427–433 (2003). [CrossRef]
  51. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. V. Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B9(3), 405–414 (1992). [CrossRef]
  52. P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express20(11), 12416–12421 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited