OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 3 — Mar. 1, 2014
  • pp: 541–552

Optimisation of microstructured waveguides in z-cut LiNbO3 crystals

Huseyin Karakuzu, Mykhaylo Dubov, Sonia Boscolo, Leonid A. Melnikov, and Yulia A. Mazhirina  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 3, pp. 541-552 (2014)
http://dx.doi.org/10.1364/OME.4.000541


View Full Text Article

Enhanced HTML    Acrobat PDF (2247 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a practical approach to the numerical optimisation of the guiding properties of buried microstructured waveguides, which can be fabricated in a z-cut lithium niobate (LiNbO3) crystal by the method of direct femtosecond laser inscription. We demonstrate the possibility to extend the spectral range of low-loss operation of the waveguide into the mid-infrared region beyond 3μm.

© 2014 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.7370) Optical devices : Waveguides
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Waveguide and Optoelectronic Devices

History
Original Manuscript: January 6, 2014
Revised Manuscript: February 9, 2014
Manuscript Accepted: February 9, 2014
Published: February 25, 2014

Virtual Issues
2013 Advanced Solid State Lasers (2013) Optics Express

Citation
Huseyin Karakuzu, Mykhaylo Dubov, Sonia Boscolo, Leonid A. Melnikov, and Yulia A. Mazhirina, "Optimisation of microstructured waveguides in z-cut LiNbO3 crystals," Opt. Mater. Express 4, 541-552 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-3-541


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Osellame, G. Cerullo, and R. Ramponi, eds., Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics Appl. Phys. 123(Springer-Verlag, 2012). [CrossRef]
  2. T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer Series in Phtonics) (Springer, 2003). [CrossRef]
  3. A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” in Conference on Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, ed., Proc. SPIE 4941, 51–57 (2003). [CrossRef]
  4. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30, 2248–2250 (2005). [CrossRef] [PubMed]
  5. I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, Topics Appl. Phys. 89(Springer-Verlag, 2003). [CrossRef]
  6. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011). [CrossRef]
  7. C. Langrockand, S. Kumarand, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using chi(2) nonlinearities in guided-wave devices,” J. Lightwave Technol.24, 2579–2592 (2006). [CrossRef]
  8. S.-D. Yang, H. Miao, Z. Jiang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultrasensitive nonlinear measurements of femtosecond pulses in the telecommunications band by aperiodically poled LiNbO3 waveguides,” Appl. Opt.46, 6759–6769 (2007). [CrossRef] [PubMed]
  9. M. A. Preciado and M. A. Muriel, “Design of an ultrafast all-optical differentiator based on a fiber Bragg grating in transmission,” Opt. Lett.33, 2458–2460 (2008). [CrossRef] [PubMed]
  10. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962). [CrossRef]
  11. S. Gross, M. Ams, D. G. Lancaster, T. M. Monro, A. Fuerbach, and M. J. Withford, “Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN,” Opt. Lett.37, 3999–4001 (2012). [CrossRef] [PubMed]
  12. S. Gross, M. Alberich, A. Arriola, M. J. Withford, and A. Fuerbach, “Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique,” Opt. Lett.38, 1872–1874 (2013). [CrossRef] [PubMed]
  13. H. Karakuzu, M. Dubov, and S. Boscolo, “Control of the properties of micro-structured waveguides in lithium niobate crystal,” Opt. Express21, 17122–17130 (2013). [CrossRef] [PubMed]
  14. P. Viale, S. Février, F. Gérôme, and H. Vilard, “Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design,” in COMSOL Multiphysics User’s Conference(2005).
  15. B. K. G. Renversez and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflatteend chromatic dispersion with low losses,” Opt. Lett.28, 989–991 (2003). [CrossRef] [PubMed]
  16. A. Turchin, M. Dubov, and J. A. R. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. & Quantum Electron.42, 873–886 (2011). [CrossRef]
  17. T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt.49, 1938–1950 (2010). [CrossRef] [PubMed]
  18. M. Aslund, N. Jovanovic, J. Groothoff, N., Canning, G. Marshall, S. Jackson, A. Fuerbach, and M. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre bragg gratings,” Opt. Express16, 14248–14254 (2008). [CrossRef] [PubMed]
  19. M. Lu and M. M. Fejer, “Anisotropic dielectric waveguides,” J. Opt. Soc. Amer. A10, 246–261 (1993). [CrossRef]
  20. I. A. Khromova and L. A. Melnikov, “Anisotropic photonic crystals: Generalized plane wave method and dispersion symmetry properties,” Opt. Commun.281, 5458–5466 (2008). [CrossRef]
  21. Y. A. Mazhirina and L. A. Melnikov, “On the structure of waveguiding regions for high-order core modes of solid-core photonic-crystal fibers,” Opt. & Spectroscopy107, 454–459 (2009). [CrossRef]
  22. Y. A. Mazhirina and L. A. Melnikov, “Numerical modelling of waveguiding properties of solid core photonic crystal fibers”, in AIP Conference Proceedings1291, 136–138 (2010). [CrossRef]
  23. A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009). [CrossRef]
  24. H. Karakuzu, M. Dubov, S. Boscolo, L. A. Melnikov, and Y. A. Mazhirina, “Control of the properties of microstructured waveguides in lithium niobate crystals,” in OSA Topical Meeting on Advanced Solid-State Lasers & Mid-Infrared Coherent Sources (ASSL/MICS), paper JTh2A.22 (2013). [CrossRef]
  25. L. A. Melnikov, Yu. S. Skibina, P. Glas, D. Fischer, N. B. Skibina, V. I. Beloglazov, and R. Wedell, “Glass and metal-glass holey fibers with high quality hexagonal structure,” in Conference on Lasers & Electro-Optics Europe (CLEO/Europe), p. 609 (2003).
  26. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004). [CrossRef]
  27. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express1917820–17833 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited