OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 3 — Mar. 1, 2014
  • pp: 568–574

A double nanostructure for wide-angle antireflection on optical polymers

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 3, pp. 568-574 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Direct plasma etching is a powerful method for producing antireflective nanostructures on optical polymers, such as cycloolefin polymers. The approved process requires the deposition of a very thin initial layer followed by etching. The structure depth achievable in this way is limited to approximately 100 nm. Due to this limitation, the reflectance performance of materials produced by plasma etching is sufficient in the visible spectral range for normal light incidence on planar substrates only. By depositing and etching an additional organic layer on top of the structure, its antireflective performance can be significantly broadened. This type of double structure is adequate for light incidence angles of up to 60° on planar and curved substrates.

© 2014 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(310.1210) Thin films : Antireflection coatings
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

Original Manuscript: January 24, 2014
Revised Manuscript: February 17, 2014
Manuscript Accepted: February 17, 2014
Published: February 27, 2014

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser, "A double nanostructure for wide-angle antireflection on optical polymers," Opt. Mater. Express 4, 568-574 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Macleod, Thin-Film Optical Filters, 3rd edition (Institute of Physics Publishing, 2001).
  2. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: Numerical investigation,” Appl. Opt.41(16), 3075–3083 (2002). [CrossRef] [PubMed]
  3. M. Minot, “The angular reflectance of single-layer gradient refractive-index films,” J. Opt. Soc. Am.67(8), 1046–1050 (1977). [CrossRef]
  4. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett.8(11), 584–586 (1983). [CrossRef] [PubMed]
  5. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973). [CrossRef]
  6. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351(1-2), 73–78 (1999). [CrossRef]
  7. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanisms and applications,” J. Vac. Sci. Technol. A15(3), 1460–1465 (1997). [CrossRef]
  8. S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999). [CrossRef] [PubMed]
  9. S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1–3), 1–35 (2010). [CrossRef]
  10. R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev.5, 1–19 (2011).
  11. A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech.20, 58–61 (2004).
  12. U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express15(20), 13108–13113 (2007). [CrossRef] [PubMed]
  13. U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt.50(9), C31–C35 (2011). [CrossRef] [PubMed]
  14. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).
  15. W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir26(7), 5110–5114 (2010). [CrossRef] [PubMed]
  16. K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX,” Optical Manufacturing and Testing VII, Proc. SPIE 6671 (2007).
  17. U. Schulz, C. Präfke, P. Munzert, C. Gödeker, and N. Kaiser, “Formation of antireflective nanostructures on melamine and N,N´-di (1-naphthyl)-N,N´-diphenyl benzidine (NPB),” Opt. Mater. Express1(1), 101–107 (2011). [CrossRef]
  18. S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A10(4), 1897–1904 (1992). [CrossRef]
  19. Optilayer software, http://www.optilayer.com

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited