OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 575–586

Optical properties and birefringence in LiInS2 in the terahertz frequency range

Shanpeng Wang, Qijun Liang, Xutang Tao, and Thomas Dekorsy  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 4, pp. 575-586 (2014)
http://dx.doi.org/10.1364/OME.4.000575


View Full Text Article

Enhanced HTML    Acrobat PDF (2039 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The birefringence of LiInS2 (LIS) crystals in the THz frequency region is investigated by THz time-domain spectroscopy (THz-TDS). The experimental results indicate that LIS has large birefringence and low absorption in the THz frequency region. The optical properties of LIS are quantitatively determined. A sharp absorption caused by a TO-phonon resonance is observed at around 1.70 THz when the Z-axis is parallel to the polarization of the incident THz wave. A temporal separation of the transmitted THz pulses with different polarization components is realized by changing the orientation of the LIS crystal with respect to the polarization of the incident THz pulses. By controlling the relative phase and amplitude of the temporally separated THz pulses, THz polarization pulse shaping caused by birefringence in LIS crystal is demonstrated.

© 2014 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(260.1440) Physical optics : Birefringence
(320.5540) Ultrafast optics : Pulse shaping
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Nonlinear Optical Materials

History
Original Manuscript: November 19, 2013
Revised Manuscript: January 17, 2014
Manuscript Accepted: January 18, 2014
Published: March 3, 2014

Citation
Shanpeng Wang, Qijun Liang, Xutang Tao, and Thomas Dekorsy, "Optical properties and birefringence in LiInS2 in the terahertz frequency range," Opt. Mater. Express 4, 575-586 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-4-575


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  2. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett.86(24), 241116 (2005). [CrossRef]
  3. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett.80(1), 154–156 (2002). [CrossRef]
  4. B. Fischer, M. Hoffmann, H. Helm, R. Wilk, F. Rutz, T. Kleine-Ostmann, M. Koch, and P. Jepsen, “Terahertz time-domain spectroscopy and imaging of artificial RNA,” Opt. Express13(14), 5205–5215 (2005). [CrossRef] [PubMed]
  5. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  6. T. Löffler, T. Hahn, M. Thomson, F. Jacob, and H. Roskos, “Large-area electro-optic ZnTe terahertz emitters,” Opt. Express13(14), 5353–5362 (2005). [CrossRef] [PubMed]
  7. J. T. Darrow, X. C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett.58(1), 25–27 (1991). [CrossRef]
  8. D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett.18(4), 290–292 (1993). [CrossRef] [PubMed]
  9. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys.109(6), 061301 (2011). [CrossRef]
  10. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express11(20), 2549–2554 (2003). [CrossRef] [PubMed]
  11. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005). [CrossRef]
  12. M. Jewariya, M. Nagai, and K. Tanaka, “Ladder climbing on the anharmonic intermolecular potential in an amino acid microcrystal via an intense monocycle terahertz pulse,” Phys. Rev. Lett.105(20), 203003 (2010). [CrossRef] [PubMed]
  13. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature487(7407), 345–348 (2012). [CrossRef] [PubMed]
  14. Y. S. Lee, N. Amer, and W. C. Hurlbut, “Terahertz pulse shaping via optical rectification in poled lithium niobate,” Appl. Phys. Lett.82(2), 170–172 (2003). [CrossRef]
  15. H. Wen and A. M. Lindenberg, “Coherent terahertz polarization control through manipulation of electron trajectories,” Phys. Rev. Lett.103(2), 023902 (2009). [CrossRef] [PubMed]
  16. S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thénot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, electrical, damage, and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B21(11), 1981–2007 (2004). [CrossRef]
  17. S. Wang, Z. Gao, X. Yin, G. Liu, H. Ruan, G. Zhang, Q. Shi, C. Dong, and X. Tao, “Crystal growth and piezoelectric, elastic and dielectric properties of novel LiInS2 crystal,” J. Cryst. Growth362, 308–311 (2013). [CrossRef]
  18. S. Wang, H. Ruan, G. Liu, G. Zhang, Q. Shi, X. Zhang, Z. Gao, C. Dong, and X. Tao, “Growth, properties and first-principles study of mid-IR nonlinear optical crystal LiInS2,” J. Cryst. Growth362, 271–275 (2013). [CrossRef]
  19. S. Wang, X. Tao, C. Dong, Z. Jiao, and M. Jiang, “Growth of LiInS2 single crystal by the accelerated crucible rotation technique,” J. Synth. Cryst.36, 8–13 (2007).
  20. L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, V. Malakhov, L. Dovlitova, J. J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth218(2-4), 313–322 (2000). [CrossRef]
  21. L. Isaenko, I. Vasilyeva, A. Merkulov, A. Yelisseyev, and S. Lobanov, “Growth of new nonlinear crystals LiMX2 (M=Al, In, Ga; X=S, Se, Te) for the mid-IR optics,” J. Cryst. Growth275(1-2), 217–223 (2005). [CrossRef]
  22. R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50fs time resolution,” Opt. Express18(6), 5974–5983 (2010). [CrossRef] [PubMed]
  23. P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Opt.26(19), 4303–4309 (1987). [CrossRef] [PubMed]
  24. A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, “Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device,” Opt. Lett.31(10), 1546–1548 (2006). [CrossRef] [PubMed]
  25. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B16(8), 1204–1212 (1999). [CrossRef]
  26. W. Zhang, A. K. Azad, and D. Grischkowsky, “Terahertz studies of carrier dynamics and dielectric response of n-type, freestanding epitaxial GaN,” Appl. Phys. Lett.82(17), 2841–2843 (2003). [CrossRef]
  27. T. Ma, C. Yang, Y. Xie, L. Sun, W. Lv, R. Wang, C. Zhu, and M. Wang, “Electronic and optical properties of orthorhombic LiInS2 and LiInSe2: a density functional theory investigation,” Comput. Mater. Sci.47(1), 99–105 (2009). [CrossRef]
  28. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron.28(10), 2057–2074 (1992). [CrossRef]
  29. G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett.74(23), 3450–3452 (1999). [CrossRef]
  30. Y. Ding and I. Zotova, “Second-order nonlinear optical materials for efficient generation and amplification of temporally-coherent and narrow-linewidth terahertz waves,” Opt. Quantum Electron.32(4/5), 531–552 (2000). [CrossRef]
  31. K. Takeya, Y. Takemoto, I. Kawayama, H. Murakami, T. Matsukawa, M. Yoshimura, Y. Mori, and M. Tonouchi, “Terahertz generation and optical properties of lithium ternary chalcogenide crystals,” J Infrared Milli Terahz Waves32(4), 426–433 (2011). [CrossRef]
  32. M. Schall, M. Walther, and P. Uhd Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B64(9), 094301 (2001). [CrossRef]
  33. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express10(21), 1161–1166 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited