OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 587–596

Broadband optical and microwave nonlinear response in topological insulator

Shuqing Chen, Chujun Zhao, Ying Li, Huihui Huang, Shunbin Lu, Han Zhang, and Shuangchun Wen  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 4, pp. 587-596 (2014)
http://dx.doi.org/10.1364/OME.4.000587


View Full Text Article

Enhanced HTML    Acrobat PDF (2168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally studied the nonlinear response of topological insulator (TI): Bi2Te3 at both the optical and microwave band, and found that the absorbance of topological insulator decreases with the increase of the incident power and reaches at a constant value once the incident power exceeds a threshold. By the open-aperture Z-scan and balanced twin detector measurement techniques, the optical saturable absorption property of TI: Bi2Te3 from 800 nm to 1550 nm was experimentally demonstrated. Based on a power dependent microwave transmittance experimental setup, TI: Bi2Te3 was also identified to show a saturation intensity of ~12 μW/cm2 and a normalized modulation depth of ~70%. We argue that the optical (resp. microwave) saturable absorption in topological insulator is a natural consequence of the Pauli-blocking principle of the electrons filled in the bulk insulating state (resp. surface metallic state). Our experimental results illustrate the potential photonic applications of TI: Bi2Te3 at both the optical and microwave band.

© 2014 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(350.3950) Other areas of optics : Micro-optics
(350.4010) Other areas of optics : Microwaves
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optical Materials

History
Original Manuscript: December 11, 2013
Revised Manuscript: February 8, 2014
Manuscript Accepted: February 9, 2014
Published: March 3, 2014

Citation
Shuqing Chen, Chujun Zhao, Ying Li, Huihui Huang, Shunbin Lu, Han Zhang, and Shuangchun Wen, "Broadband optical and microwave nonlinear response in topological insulator," Opt. Mater. Express 4, 587-596 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-4-587


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004). [CrossRef]
  2. P. E. Allain and J. N. Fuchs, “Klein tunneling in graphene: optics with massless electrons,” Eur. Phys. J. B83(3), 301–317 (2011). [CrossRef]
  3. J. E. Moore, “The birth of topological insulators,” Nature464(7286), 194–198 (2010). [CrossRef] [PubMed]
  4. J. E. Moore, “Topological insulators: The next generation,” Nat. Phys.5(6), 378–380 (2009). [CrossRef]
  5. D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, “Few-layer nanoplates of Bi2 Se3 and Bi2Te3 with highly tunable chemical potential,” Nano Lett.10(6), 2245–2250 (2010). [CrossRef] [PubMed]
  6. L. Fidkowski, “Entanglement spectrum of topological insulators and superconductors,” Phys. Rev. Lett.104(13), 130502 (2010). [CrossRef] [PubMed]
  7. H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys.5(6), 438–442 (2009). [CrossRef]
  8. Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009). [CrossRef]
  9. H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked wavelength-tunable dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010). [CrossRef]
  10. Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J.4(3), 869–876 (2012). [CrossRef]
  11. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  12. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010). [CrossRef]
  13. Z. W. Zheng, C. J. Zhao, S. B. Lu, Y. Chen, Y. Li, H. Zhang, and S. C. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express20(21), 23201–23214 (2012). [CrossRef] [PubMed]
  14. C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express20(25), 27888–27895 (2012). [CrossRef] [PubMed]
  15. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express4(1), 1–6 (2014). [CrossRef]
  16. Y. Chen, C. J. Zhao, H. H. Huang, S. Q. Chen, P. H. Tang, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol.31(17), 2857–2863 (2013). [CrossRef]
  17. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett.38(24), 5212–5215 (2013). [CrossRef] [PubMed]
  18. S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express21(2), 2072–2082 (2013). [CrossRef] [PubMed]
  19. Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express21(24), 29516–29522 (2013). [CrossRef]
  20. P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped1645-nm Er:YAG ceramic laser,” IEEE Photonics J.5(2), 1500707 (2013).
  21. C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101(21), 211106 (2012). [CrossRef]
  22. Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010). [CrossRef] [PubMed]
  23. J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, “Magnetic doping and Kondo effect in Bi2Se3 nanoribbons,” Nano Lett.10(3), 1076–1081 (2010). [CrossRef] [PubMed]
  24. D. Teweldebrhan, V. Goyal, and A. A. Balandin, “Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals,” Nano Lett.10(4), 1209–1218 (2010). [CrossRef] [PubMed]
  25. L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li, and J. X. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22(11), 4921–4926 (2012). [CrossRef]
  26. J. He, L. Chen, Z. Dong, S. Wen, and J. Yu, “Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation,” Opt. Fiber Technol.15(3), 290–295 (2009). [CrossRef]
  27. H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett.37(11), 1856–1858 (2012). [CrossRef] [PubMed]
  28. J. He, W. Ji, G. H. Ma, S. H. Tang, H. I. Elim, and W. X. Sun, “Excitonic nonlinear absorption in CdS nanocrystals studied using Z-scan technique,” J. Appl. Phys.95(11), 6381–6386 (2004). [CrossRef]
  29. V. A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W. X. Gao, K. Takase, Y. Giman, P. Lostak, and J. Horak, “Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi2-xSnxTe3 single crystals,” Phys. Rev. B Condens. Matter50(23), 16921–16930 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited