OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 597–612

Raman, green and infrared emission cross-sectionsof Er3+ doped TZPPN tellurite glass

K. Damak, E. Yousef, S. AlFaify, C. Rüssel, and R. Maâlej  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 4, pp. 597-612 (2014)
http://dx.doi.org/10.1364/OME.4.000597


View Full Text Article

Enhanced HTML    Acrobat PDF (1290 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spectroscopic properties of Er3‏+ ion in tellurite glass of molar composition 76TeO2∙10ZnO∙9.0PbO∙1.0PbF2∙3.0Na2O∙1.0Er2O3 was investigated experimentally. The three phenomenological intensity parameters Ωk (k = 2, 4, 6) were determined from the absorption spectral intensities using the Judd-Ofelt (J-O) theory. Several radiative properties such as spontaneous transition probabilities, fluorescence branching ratios and radiative life times were determined by using these intensity parameters. The special attention was attributed to the visible emissions that could be obtained by pumping using a blue laser diode. The stimulated emission cross-section and CIE chromaticity coordinates were calculated. The latter were used to evaluate green light emitting by Er:TZPPN glass. Subsequently, the stimulated emission cross-section, around 1.5 μm, was calculated from McCumber theory. Gain cross-section for laser transition 4I13/24I15/2 of Er3+-ions was obtained. In comparison with other Er-doped laser glasses, the calculated parameters show that Er:TZPPN glass satisfies the fundamental spectral condition for laser emission around 1.5 μm. Moreover the Raman gain coefficient of the present glass was obtained from Raman scattering experiments using 532 nm excitation [(532 nm Laser type Diode-pumped, solid state (DPSS)]. The developed glass showed the widest bandwidths of gain cross section from 249 to 1,106 cm−1.

© 2014 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.5690) Materials : Rare-earth-doped materials
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Glass and Other Amorphous Materials

History
Original Manuscript: January 27, 2014
Revised Manuscript: February 22, 2014
Manuscript Accepted: February 26, 2014
Published: March 4, 2014

Virtual Issues
Optical Materials for Flat Panel Displays (2013) Optical Materials Express

Citation
K. Damak, E. Yousef, S. AlFaify, C. Rüssel, and R. Maâlej, "Raman, green and infrared emission cross-sectionsof Er3+ doped TZPPN tellurite glass," Opt. Mater. Express 4, 597-612 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-4-597


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater.3(3), 187–203 (1994). [CrossRef]
  2. N. Jaba, A. Kanoun, H. Mejri, A. Selmi, S. Alaya, and H. Maaref, “Infrared to visible up-conversion study for erbium-doped zinc tellurite glasses,” J. Phys. Condens. Matter12(20), 4523–4534 (2000). [CrossRef]
  3. E. Yousef, M. Hotzel, and C. Rüssel, “Effect of ZnO and Bi 2O 3 addition on linear and non-linear optical properties of tellurite glasses,” J. Non-Cryst. Solids353(4), 333–338 (2007). [CrossRef]
  4. D. Zhou, R. Wang, Z. Yang, Z. Song, Z. Yin, and J. Qiu, “Spectroscopic properties of Tm3+ doped TeO2-R 2O-La2O3 glasses for 1.47 μm optical amplifiers,” J. Non-Cryst. Solids357(11-13), 2409–2412 (2011). [CrossRef]
  5. R. Balda, J. Fernández, S. García-Revilla, and J. M. Fernández Navarro, “Spectroscopy and concentration quenching of the infrared emissions in Tm3+-doped TeO2-TiO2-Nb2O5 glass,” Opt. Express15(11), 6750–6761 (2007). [CrossRef] [PubMed]
  6. E. R. Taylor, L. N. Ng, and N. P. Sessions, “Spectroscopy of Tm3+-doped tellurite glasses for 1,470 nm fiber amplifier,” J. Appl. Phys.92, 112–117 (2002).
  7. N. Jaba, H. BenMansour, A. Kanoun, A. Brenier, and B. Champagnon, “Spectral broadening and luminescence quenching of 1.53 μm emission in Er3+-doped zinc tellurite glass,” J. Lumin.129(3), 270–276 (2009). [CrossRef]
  8. E. S. Yousef, K. Damak, R. Maalej, and C. Rüssel, “Thermal stability and UV–Vis-NIR spectroscopy of a new erbium-doped fluorotellurite glass,” Philos. Mag.92(7), 899–911 (2012). [CrossRef]
  9. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962). [CrossRef]
  10. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962). [CrossRef]
  11. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A136(4), 954–957 (1964). [CrossRef]
  12. P. A. Stephen, A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28, 2619–2630 (1992).
  13. K. Damak, R. Maalej, E. S. Yousef, A. H. Qusti, and C. Rüssel, “Thermal and spectroscopic properties of Tm3+ doped TZPPN transparent glass laser material,” J. Non-Cryst. Solids358(22), 2974–2980 (2012). [CrossRef]
  14. R. Maalej, A. Chehaidar, and M. Kamoun, “Crystal-field analysis of Er3+ emission spectrum in epitaxial Ca(1-x)ErxF2+x thin films,” Phys. Status Solidi (B) Basin Res.221, 657–666 (2000).
  15. B. Zhou, L. Tao, C. Y.-Y. Chan, Y. H. Tsang, and W. Jin, “Intense near-infrared emission of 1.23 µm in erbium-doped low-phonon-energy fluorotellurite glass,” Spectrochim. Acta [A]111, 49–53 (2013). [CrossRef]
  16. A. C. Harris and I. L. Weatherall, “Objective evaluation of colour variation in the sand-burrowing beetle Chaerodestrachyscelides White (Coleoptera: Tenebrionidae) by instrumental determination of CIELAB values,” J. R. Soc. N. Z.20(3), 253–259 (1990). [CrossRef]
  17. H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the CIE 1931 color-matching functions were derived from wright-guild data,” Color Res. Appl.22(1), 11–23 (1997). [CrossRef]
  18. R. R. Xu, Y. Tian, M. Wang, L. L. Hu, and J. J. Zhang, “Spectroscopic properties of 1.8 μm emission of thulium ions in germanate glass,” Appl. Phys. B102(1), 109–116 (2011). [CrossRef]
  19. Z. Ling, Z. Ya-Xun, D. Shi-Xun, X. Tie-Feng, N. Qiu-Hua, and S. Xiang, “Effect of Ga2O3 on the spectroscopic properties of erbium-doped boro-bismuth glasses,” Spectrochim. Acta [A]68(3), 548–553 (2007). [CrossRef]
  20. G. Bilir, G. Ozen, D. Tatar, and M. L. Öveçoğlu, “Judd–Ofelt analysis and near infrared emission properties of the Er3+ ions in tellurite glasses containing WO3 and CdO,” Opt. Commun.284(3), 863–868 (2011). [CrossRef]
  21. U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Caceres, F. Rivera-Lopez, S. F. Leon-Luís, and V. Lavín, “Optical characterization, 1.5μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin.131(6), 1239–1248 (2011). [CrossRef]
  22. R. Rolli, M. Montagna, S. Chaussedent, A. Monteil, V. K. Tikhomirov, and M. Ferrari, “Erbium-doped tellurite glasses with high quantum efficiency and broadband stimulated emission cross section at 1.5 μm,” Opt. Mater.21(4), 743–748 (2003). [CrossRef]
  23. S. Jianga, B.-C. Hwang, T. Luo, K. Seneschal, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Net gain of 15.5 dB from a 5.1 cm long Er3+-doped phosphate glass fiber,” Optical Fiber Comm.4, 181–183 (2000).
  24. T. Xu, X. Shen, Q. Nie, and Y. Gao, “Spectral properties and thermal stability of Er3+/Yb3+codoped tungsten–tellurite glasses,” Opt. Mater.28(3), 241–245 (2006). [CrossRef]
  25. W. Deng, J. Zhang, J. Sun, Y. Luo, J. Lin, X. Wang, and W. Xu, “Analysis of spectral components in the 1.5 μm emission band of Er3+ doped borosilicate glass,” J. Non-Cryst. Solids336(1), 44–48 (2004). [CrossRef]
  26. G. Bilir and G. Ozen, “Optical absorption and emission properties of Nd3+ in TeO2–WO3 and TeO2–WO3–CdO glasses,” Physica B406(21), 4007–4013 (2011). [CrossRef]
  27. F. Rivera-López, P. Babu, L. Jyothi, U. R. Rodríguez-Mendoza, I. R. Martín, C. K. Jayasankar, and V. Lavín, “Er3+–Yb3+codoped phosphate glasses used for an efficient 1.5 μm broadband gain medium,” Opt. Mater.34(8), 1235–1240 (2012). [CrossRef]
  28. E. Desurvire and J. R. Simpson, “Evaluation of 4I15/2 and 4I13/2 Stark-level energies in erbium-doped aluminosilicate glass fibers,” Opt. Lett.15(10), 547–549 (1990). [CrossRef] [PubMed]
  29. X. Li and W. Zhang, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped tellurite glass,” Physica B403(18), 3286–3288 (2008). [CrossRef]
  30. X. Shen, Q. Nie, and X. Wang, “Effect of Bi2O3 on spectroscopic properties of Er3+ -doped tellurite bismuth glasses for broadband optical amplifiers,” IEEE International Conference on Industrial Informatics, 1233 (2006). [CrossRef]
  31. I. Shaltout and Y. Badr, “Manifestation of Nd ions on the structure, Raman and IR spectra of (TeO2 -MoO-Nd2O3) glasses,” J. Mater. Sci.40(13), 3367–3373 (2005). [CrossRef]
  32. T. Hayakawa, M. Koduka, M. Nogami, J. R. Duclere, A. P. Mirgorodsky, and P. Thomas, “Metal oxide doping effects on Raman spectra and third-order nonlinear susceptibilities of thallium–tellurite glasses,” Scr. Mater.62(10), 806–809 (2010). [CrossRef]
  33. A. Mogusmilankovic, A. Šantić, S. T. Reis, K. Furic, and D. E. Day, “Studies of lead–iron phosphate glasses by Raman, Mössbauer and impedance spectroscopy,” J. Non-Cryst. Solids351(40-42), 3246–3258 (2005). [CrossRef]
  34. V. K. Malinovesky and A. P. Sokolov, “The nature of boson peak in Raman scattering in glasses,” Solid State Commun.57(9), 757–761 (1986).
  35. T. Sekiya, N. Mochida, and A. Ohtsuka, “Raman spectra of MO- TeO2 (M = Mg, Sr, Ba and Zn) glasses,” J. Non-Cryst. Solids168(1-2), 106–114 (1994). [CrossRef]
  36. G. Guery, A. Farges, T. Cardinal, M. Dussauze, F. Adamietz, V. Rodriguez, J. D. Musgraves, K. Richardson, and P. Thomas, “Impact of tellurite-based glass structure on Raman gain,” Chem. Phys. Lett.554, 123127 (2012).
  37. U. Hoppe, E. Yousef, C. Rüssel, J. Neuefeind, and A. C. Hannon, “Structure of zinc and niobium tellurite glasses by neutron and x-ray diffraction,” J. Phys. Condens. Matter16(9), 1645–1663 (2004). [CrossRef]
  38. K. Damak, E. S. Yousef, A. S. Al-Shihri, H. J. Seo, C. Rüssel, and R. Maâlej, “Quantifying Raman and emission gain coefficients of Ho3+ doped TeO2·ZnO·PbO·PbF2·Na2O (TZPPN) tellurite glass,” Solid State Sci.28, 74–80 (2014). [CrossRef]
  39. R. H. Stolen, C. Lee, and R. K. Jain, “Development of simulated Raman spectrum in single mode silica fibers,” J. Opt. Soc. Am. B1(4), 652–662 (1984). [CrossRef]
  40. C. Rivero, K. Richardson, R. Stegeman, G. Stegeman, T. Cardinal, E. Fargin, M. Couzi, and V. Rodriguez, “Quantifying Raman gain coefficients in tellurite glasses,” J. Non-Cryst. Solids345-346(346), 396–401 (2004). [CrossRef]
  41. R. Jose and Y. Ohishi, “Higher Raman scattering cross-sections, bandwidths, and nonlinear indices in the TeO2- ZnO- Nb2O5- Mo2O3 quaternary glass system,” Appl. Phys. Lett.89, 121122 (2006).
  42. R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Tailoring of Raman gain bandwidth of tellurite glasses for designing gain-flattened fiber Raman amplifiers,” J. Opt. Soc. Am. B25(3), 373–382 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited