OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 613–623

Effect of Bi2O3 doping on persistent luminescence of MgGeO3:Mn2+ phosphor

Yumiko Katayama, Jumpei Ueda, and Setsuhisa Tanabe  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 4, pp. 613-623 (2014)
http://dx.doi.org/10.1364/OME.4.000613


View Full Text Article

Enhanced HTML    Acrobat PDF (2865 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photoluminescence, persistent luminescence and thermoluminescence properties of Mg(0.998-x)Mn0.002BixGeO3 (x = 0, 0.001, 0.005, 0.01, 0.02) were investigated. A Mn-Bi co-doped sample with x = 0.005 showed the most intense red persistent luminescence due to the Mn2+:4T26A1 transition peaked at 680 nm. The persistent luminescence intensity of the sample with x = 0.005 was 30 times higher than that of the Mn singly doped sample (x = 0). All Mn-Bi co-doped samples showed an additional glow peak at approximately 320 K. From the continuous decrease of Bi3+ luminescence intensity in storage process by UV light, it was suggested that Bi itself functions as an electron-trapping center. We proposed an energy level diagram which explains red persistent mechanism in MgGeO3:Mn-Bi.

© 2014 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.2900) Materials : Optical storage materials
(160.6990) Materials : Transition-metal-doped materials

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: January 6, 2014
Revised Manuscript: February 9, 2014
Manuscript Accepted: February 10, 2014
Published: March 6, 2014

Citation
Yumiko Katayama, Jumpei Ueda, and Setsuhisa Tanabe, "Effect of Bi2O3 doping on persistent luminescence of MgGeO3:Mn2+ phosphor," Opt. Mater. Express 4, 613-623 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-4-613


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996). [CrossRef]
  2. H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 Phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996). [CrossRef]
  3. Y. Lin, C.-W. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003). [CrossRef]
  4. S. Shionoya and W. M. Yen, Phosphor Handbook (CRC Press, 1998).
  5. X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphors,” Mater. Chem. Phys.80(1), 1–5 (2003). [CrossRef]
  6. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009). [CrossRef]
  7. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007). [CrossRef] [PubMed]
  8. T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. V. Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express2(3), 261–268 (2012). [CrossRef]
  9. A. Abdukayum, J.-T. Chen, Q. Zhao, and X.-P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc.135(38), 14125–14133 (2013). [CrossRef] [PubMed]
  10. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003). [CrossRef] [PubMed]
  11. C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, “Near-infrared fluorescent materials for sensing of biological targets,” Sensors (Basel Switzerland)8(5), 3082–3105 (2008). [CrossRef]
  12. T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011). [CrossRef] [PubMed]
  13. A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express19(11), 10131–10137 (2011). [CrossRef] [PubMed]
  14. F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci Rep3, 1554–1563 (2013). [CrossRef] [PubMed]
  15. Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011). [CrossRef] [PubMed]
  16. M. Iwasaki, D. N. Kim, K. Tanaka, T. Murata, and K. Morinaga, “Red phosphorescence properties of Mn ions in MgO–GeO2 compounds,” Sci. Technol. Adv. Mater.4(2), 137–142 (2003). [CrossRef]
  17. S. H. M. Poort, D. Cetin, A. Meijerink, and G. Blasse, “The luminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc.144(6), 2179–2183 (1997). [CrossRef]
  18. A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in clinoenstatite,” J. Lumin.129(12), 1527–1530 (2009). [CrossRef]
  19. Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X.- Wang, “Enhanced red phosphorescence in MgGeO3 : Mn2 + by addition of Yb3 + ions,” J. Electrochem. Soc.156(4), H272–H275 (2009). [CrossRef]
  20. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009). [CrossRef] [PubMed]
  21. Y. Zhuang, J. Ueda, and S. Tanabe, “Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics,” J. Phys. Chem. C2, 217–222 (2012).
  22. W. Lehmann, “Activator and co-activators in calcium sulfide phosphors,” J. Lumin.5(2), 87–107 (1972). [CrossRef]
  23. S. Zhou and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008). [CrossRef]
  24. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001). [CrossRef]
  25. P. Boutinaud, “Revisiting the spectroscopy of the Bi3+ ion in oxide compounds,” Inorg. Chem.52(10), 6028–6038 (2013). [CrossRef] [PubMed]
  26. G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968). [CrossRef]
  27. G. Blasse and A. C. Steen, “Luminescence characteristics of Bi3+-activated oxides,” Solid State Commun.31(12), 993–994 (1979). [CrossRef]
  28. A. M. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin.78(4), 239–243 (1998). [CrossRef]
  29. G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetrabotrate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994). [CrossRef]
  30. M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994). [CrossRef]
  31. Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping,” Appl. Phys. Express6(5), 052602 (2013). [CrossRef]
  32. M. Ozima, “Structure of orthophyroxene-type and clinopyroxene-type magnesium germanium oxide MgGeO3,” Acta Crystallogr. C39(9), 1169–1172 (1983). [CrossRef]
  33. R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976). [CrossRef]
  34. D. Curie, Luminescence in Crystals (Dunod, 1960).
  35. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Mater.3(4), 2536–2566 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited