OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 624–637

Influence of non-diamond carbon phase on recombination mechanisms of photoexcited charge carriers in microcrystalline and nanocrystalline diamond studied by time resolved photoluminescence spectroscopy

Pavel Galář, Branislav Dzurňák, Marian Varga, Marian Marton, Alexander Kromka, and Petr Malý  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 4, pp. 624-637 (2014)
http://dx.doi.org/10.1364/OME.4.000624


View Full Text Article

Enhanced HTML    Acrobat PDF (1773 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recombination processes of photoexcited charge carriers in as-grown micro/nanocrystalline diamond films containing various amounts of non-diamond carbon phase were studied by time resolved photoluminescence spectroscopy. The photoluminescence was found to be strongly sensitive to diamond morphology and concentration of non-diamond carbon phase. We found two photoluminescence components differing in decay rates (nano/microsecond time scales) and in response to ambient air pressure, temperature and excitation light parameters. Experimental data form the basis for interpretation of recombination paths of photoexcited charge carriers in micro/nanocrystalline diamond films in dependence on their morphology and non-diamond carbon phase content.

© 2014 Optical Society of America

OCIS Codes
(260.3800) Physical optics : Luminescence
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.4240) Ultrafast optics : Nanosecond phenomena
(160.4236) Materials : Nanomaterials
(180.5655) Microscopy : Raman microscopy

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: January 6, 2014
Revised Manuscript: February 27, 2014
Manuscript Accepted: February 28, 2014
Published: March 7, 2014

Citation
Pavel Galář, Branislav Dzurňák, Marian Varga, Marian Marton, Alexander Kromka, and Petr Malý, "Influence of non-diamond carbon phase on recombination mechanisms of photoexcited charge carriers in microcrystalline and nanocrystalline diamond studied by time resolved photoluminescence spectroscopy," Opt. Mater. Express 4, 624-637 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-4-624


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. de Sanoit, E. Vanhove, P. Mailley, and P. Bergonzo, “Electrochemical diamond sensors for TNT detection in water,” Electrochim. Acta54(24), 5688–5693 (2009). [CrossRef]
  2. S. Stehlík, T. Ižák, A. Kromka, B. Dolenský, M. Havlík, and B. Rezek, “Sensitivity of Diamond-Capped Impedance Transducer to Tröger’s Base Derivative,” ACS Appl. Mater. Interfaces4(8), 3860–3865 (2012). [CrossRef] [PubMed]
  3. M. Davydova, M. Stuchlík, B. Rezek, K. Larsson, and A. Kromka, “Sensing of phosgene by a porous-like nanocrystalline diamond layer with buried metallic electrodes,” Sens. Actuators B Chem.188, 675–680 (2013). [CrossRef]
  4. B. Rezek, M. Krátká, A. Kromka, and M. Kalbáčová, “Effects of protein inter-layers on cell-diamond FET characteristics,” Biosens. Bioelectron.26(4), 1307–1312 (2010). [CrossRef] [PubMed]
  5. M. Krátká, A. Kromka, E. Ukraintsev, M. Ledinský, A. Brož, M. Kalbáčová, and B. Rezek, “Function of thin film nanocrystalline diamond-protein SGFET independent of grain size,” Sens. Actuators B Chem.166-167, 239–245 (2012). [CrossRef]
  6. A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater.3(10), 736–742 (2004). [CrossRef] [PubMed]
  7. J. Čermák, B. Rezek, P. Hubík, J. J. Mareš, A. Kromka, and A. Fejfar, “Photo-conductivity and Hall mobility of holes at polypyrrole-diamond interface,” Diamond Related Materials19(2-3), 174–177 (2010). [CrossRef]
  8. V. Prajzler, M. Varga, P. Nekvindová, Z. Remeš, and A. Kromka, “Design and investigation of properties of nanocrystalline diamond optical planar waveguides,” Opt. Express21(7), 8417–8425 (2013). [CrossRef] [PubMed]
  9. L. Ondič, O. Babchenko, M. Varga, A. Kromka, J. Ctyroký, and I. Pelant, “Diamond photonic crystal slab: Leaky modes and modified photoluminescence emission of surface-deposited quantum dots,” Sci Rep2, 914 (2012). [CrossRef] [PubMed]
  10. A. M. Zaitsev, Optical Properties of Diamond (Springer, 2001), Chap.5.
  11. M. Vaněček, J. Rosa, M. Nesládek, and L. M. Stals, “Evidence for the principal defect states in CVD diamond films: Optical study,” Diamond Related Materials5(9), 952–957 (1996). [CrossRef]
  12. P. Achatz, J. A. Garrido, M. Stutzmann, O. A. Williams, D. M. Gruen, A. Kromka, and D. Steinmüller, “Optical properties of nanocrystalline diamond thin films,” Appl. Phys. Lett.88(10), 101908 (2006). [CrossRef]
  13. B. Dzurňák, F. Trojánek, J. Preclíková, A. Kromka, B. Rezek, and P. Malý, “Ultrafast photoluminescence spectroscopy of H- and O-terminated nanocrystalline diamond films,” Diamond Related Materials20(8), 1155–1159 (2011). [CrossRef]
  14. P. Němec, J. Preclíková, A. Kromka, B. Rezek, and P. Malý, “Ultrafast dynamics of photoexcited charge carriers in nanocrystalline diamond,” Appl. Phys. Lett.93(8), 083102 (2008). [CrossRef]
  15. B. R. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diamond Related Materials19(4), 314–318 (2010). [CrossRef]
  16. T. Ikeda, K. Teii, C. Casiraghi, J. Robertson, and A. C. Ferrari, “Effect of the sp2 carbon phase on n-type conduction in nanodiamond films,” J. Appl. Phys.104(7), 073720 (2008). [CrossRef]
  17. J. Preclíková, F. Trojánek, B. Dzurňák, P. Malý, A. Kromka, and B. Rezek, “Light-assisted adsorption processes in nanocrystalline diamond membranes studied by femtosecond laser spectroscopy,” Diamond Related Materials19(7-9), 918–922 (2010). [CrossRef]
  18. M. Varga, T. Ižák, A. Kromka, M. Veselý, K. Hruška, and M. Michalka, “Study of diamond film nucleation by ultrasonic seeding in different solutions,” Cent. Eur. J. Phys.10(1), 218–224 (2012). [CrossRef]
  19. T. Ižák, M. Marton, M. Varga, M. Vojs, M. Veselý, R. Redhammer, and M. Michalka, “Bias enhanced nucleation of diamond thin films in a modified HFCVD reactor,” Vacuum84(1), 49–52 (2009). [CrossRef]
  20. W. Fortunato, A. J. Chiquito, J. C. Galzerani, and J. R. Moro, “Crystalline quality and phase purity of CVD diamond films studied by Raman spectroscopy,” J. Mater. Sci.42(17), 7331–7336 (2007). [CrossRef]
  21. B. Dzurňák, F. Trojánek, J. Preclíková, A. Kromka, B. Rezek, and P. Malý, “Subgap photoluminescence spectroscopy of nanocrystalline diamond films,” Diamond Related Materials18(5-8), 776–778 (2009). [CrossRef]
  22. M. Varga, Z. Remeš, O. Babchenko, and A. Kromka, “Optical study of defects in nano-diamond films grown in linear antenna microwave plasma CVD from H2/CH4/CO2 gas mixture,” Phys. Status Solidi, B Basic Res.249(12), 2635–2639 (2012). [CrossRef]
  23. K. Dunn, J. Derr, T. Johnston, M. Chaker, and F. Rosei, “Multiexponential photoluminescence decay of blinking nanocrystal ensembles,” Phys. Rev. B80(3), 035330 (2009). [CrossRef]
  24. L. Pavesi and M. Ceschini, “Stretched-exponential decay of the luminescence in porous silicon,” Phys. Rev. B Condens. Matter48(23), 17625–17628 (1993). [CrossRef] [PubMed]
  25. J. Bisquert, “Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 011109 (2005). [CrossRef] [PubMed]
  26. P. H. Sher, J. M. Smith, P. A. Dalgarno, R. J. Warburton, X. Chen, P. J. Dobson, S. M. Daniels, N. L. Pickett, and P. O’Brien, “Power law carrier dynamics in semiconductor nanocrystals at nanosecond timescales,” Appl. Phys. Lett.92(10), 101111 (2008). [CrossRef]
  27. J. Klafter and M. F. Shlesinger, “On the relationship among three theories of relaxation in disordered systems,” Proc. Natl. Acad. Sci. U.S.A.83(4), 848–851 (1986). [CrossRef] [PubMed]
  28. M. Nesládek, K. Meykens, L. M. Stals, M. Vaněček, and J. Rosa, “Origin of characteristic subgap optical absorption in CVD diamond films,” Phys. Rev. B Condens. Matter54(8), 5552–5561 (1996). [CrossRef] [PubMed]
  29. D. J. Huntley, “An explanation of the power-law decay of luminescence,” J. Phys. Condens. Matter18(4), 1359–1365 (2006). [CrossRef]
  30. A. K. Jonscher and A. de Polignac, “The time dependence of luminescence in solids,” J. Phys. C Solid State Phys.17(35), 6493–6519 (1984). [CrossRef]
  31. J. Preclíková, F. Trojánek, A. Kromka, B. Rezek, B. Dzurňák, and P. Malý, “Ultrafast photoluminescence of nanocrystalline diamond films,” Phys. Status Solidi., A Appl. Mater. Sci.205(9), 2154–2157 (2008). [CrossRef]
  32. J. Robertson, “Gap states in diamond-like amorphous carbon,” Philos. Mag. B76(3), 335–350 (1997). [CrossRef]
  33. Z. Remeš, T. Ižák, A. Kromka, and M. Vaněček, “High optical quality nanocrystalline diamond with reduced non-diamond contamination,” Diamond Related Materials19(5-6), 453–456 (2010). [CrossRef]
  34. P. Hubík, J. J. Mareš, H. Kozák, A. Kromka, B. Rezek, J. Krištofík, and D. Kindl, “Transport properties of hydrogen-terminated nanocrystalline diamond films,” Diamond Related Materials24, 63–68 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited