OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 638–648

Broadband Cr3+-sensitized upconversion luminescence in La3Ga5GeO14: Cr3+,Yb3+,Er3+

S. Ye, E. H. Song, E. Ma, S. J. Zhang, J. Wang, X. Y. Chen, Q. Y. Zhang, and J. R. Qiu  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 4, pp. 638-648 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broadband-light-sensitized upconversion (UC) photon management phenomenon in La3Ga5GeO14:Cr3+,Yb3+,Er3+ is reported, featuring the concentrated broadband noncoherent light excitable at room temperature. Energy transfer among Cr3+/Yb3+/Er3+ in the Stokes and UC luminescence processes reveals that Yb3+ as a “bridge” is requisite for Cr3+-sensitized UC luminescence of Er3+. Low Cr3+ contents are preferred for UC luminescence of Yb3+-Er3+, since it would be quenched by high Cr3+ contents. The designed UC emissions 2H11/24I15/2 and 4S3/24I15/2 of Er3+ at around 510 ~560 nm are proposed to through Energy transfer upconversion (ETU) mechanism based on the Cr3+-Yb3+ dimer model with superexchange interaction according to crystallographic data and the decay curves of Er3+ UC emission. This research may open up a new perspective to design novel photonic materials excitable by broadband noncoherent light for improving the photoresponse of solar cells.

© 2014 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials
(160.6990) Materials : Transition-metal-doped materials

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: January 14, 2014
Revised Manuscript: March 2, 2014
Manuscript Accepted: March 2, 2014
Published: March 7, 2014

S. Ye, E. H. Song, E. Ma, S. J. Zhang, J. Wang, X. Y. Chen, Q. Y. Zhang, and J. R. Qiu, "Broadband Cr3+-sensitized upconversion luminescence in La3Ga5GeO14: Cr3+,Yb3+,Er3+," Opt. Mater. Express 4, 638-648 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  2. T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys.92(7), 4117–4122 (2002). [CrossRef]
  3. B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006). [CrossRef]
  4. J. de Wild, A. Meijerink, J. K. Rath, J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energy Environ. Sci.4(12), 4835–4848 (2011). [CrossRef]
  5. R. Naccache, F. Vetrone, and J. A. Capobianco, “Lanthanide-Doped Upconverting Nanoparticles: Harvesting Light for Solar Cells,” ChemSusChem6(8), 1308–1311 (2013). [CrossRef] [PubMed]
  6. T. N. Singh-Rachford and F. N. Castellano, “Photon upconversion based on sensitized triplet–triplet annihilation,” Coord. Chem. Rev.254(21-22), 2560–2573 (2010). [CrossRef]
  7. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009). [CrossRef] [PubMed]
  8. X. F. Liang, X. Y. Huang, and Q. Y. Zhang, “Gd2(MoO4)3:Er3+ Nanophosphors for an Enhancement of Silicon Solar-Cell Near-Infrared Response,” J. Fluoresc.19(2), 285–289 (2009). [CrossRef] [PubMed]
  9. D. Q. Chen, L. Lei, A. P. Yang, Z. X. Wang, and Y. S. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.)48(47), 5898–5900 (2012). [CrossRef] [PubMed]
  10. J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005). [CrossRef]
  11. A. X. Yin, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals,” Nanoscale2(6), 953–959 (2010). [CrossRef] [PubMed]
  12. Z. Yin, Y. S. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. W. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.)49(36), 3781–3783 (2013). [CrossRef] [PubMed]
  13. I. Etchart, I. Hernández, A. Huignard, M. Bérard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion: Yb3+ and Ho3+ co-doped Ln2BaZnO5,” J. Mater. Chem.21, 1387–1394 (2011). [CrossRef]
  14. S. Ye, D. C. Yu, X. M. Wang, E. H. Song, and Q. Y. Zhang, “Anomalous upconversion emission of Eu3+-Yb3+-MoO6 in double perovskite induced by a laser,” J. Mater. Chem. C1(8), 1588–1594 (2013). [CrossRef]
  15. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007). [CrossRef] [PubMed]
  16. V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles,” J. Appl. Phys.103(10), 103526 (2008). [CrossRef]
  17. N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.)47(27), 7671–7673 (2011). [CrossRef] [PubMed]
  18. W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics6(8), 560–564 (2012). [CrossRef]
  19. X. J. Xie and X. G. Liu, “Photonics: Upconversion goes broadband,” Nat. Mater.11(10), 842–843 (2012). [CrossRef] [PubMed]
  20. Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenze,” Ann. Phys.437(1-2), 55–75 (1948). [CrossRef]
  21. F. F. Chen, Z. Q. Chen, Z. Q. Bian, and C. H. Huang, “Sensitized luminescence from lanthanides in d–f bimetallic complexes,” Coord. Chem. Rev.254(9-10), 991–1010 (2010). [CrossRef]
  22. L. Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. Bünzli, P. Y. Morgantini, K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, and C. Piguet, “Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes,” J. Am. Chem. Soc.134(30), 12675–12684 (2012). [CrossRef] [PubMed]
  23. P. Gerner, K. Krämer, and H. U. Güdel, “Broad-band Cr5+ sensitized Er3+ luminescence in YVO4,” J. Lumin.102–103, 112–118 (2003). [CrossRef]
  24. L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer, J. C. Bünzli, A. Hauser, and C. Piguet, “Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex,” Angew. Chem. Int. Ed. Engl.50(18), 4108–4112 (2011). [CrossRef] [PubMed]
  25. C. Reinhard, K. Krämer, D. A. Biner, and H. U. Güdel, “Cooperative radiative and nonradiative effects in K2NaScF6 codoped with V3+ and Er3+.,” J. Chem. Phys.120(7), 3374–3380 (2004). [CrossRef] [PubMed]
  26. C. Reinhard and H. U. Güdel, “Cooperative processes in Pr3+ and V3+ codoped Cs2NaScCl6,” J. Lumin.102–103, 373–379 (2003). [CrossRef]
  27. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004). [CrossRef] [PubMed]
  28. R. Martín-Rodríguez, R. Valiente, and M. Bettinelli, “Room-temperature green upconversion luminescence in LaMgAl11O19:Mn2+, Yb3+ upon infrared excitation,” Appl. Phys. Lett.95(9), 091913 (2009). [CrossRef]
  29. S. Ye, Y. J. Li, D. C. Yu, G. P. Dong, and Q. Y. Zhang, “Room-temperature upconverted white light from GdMgB5O10: Yb3+, Mn2+,” J. Mater. Chem.21(11), 3735–3739 (2011). [CrossRef]
  30. C. Renero-Lecuna, R. Martín-Rodríguez, R. Valiente, J. González, F. Rodríguez, K. W. Krämer, and H. U. Güdel, “Origin of the High Upconversion Green Luminescence Efficiency in β-NaYF4: 2%Er3+,20%Yb3+,” Chem. Mater.23(15), 3442–3448 (2011). [CrossRef]
  31. L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, and C. Piguet, “Optical sensitization and upconversion in discrete polynuclear chromium-lanthanide complexes,” Coord. Chem. Rev.256(15-16), 1644–1663 (2012). [CrossRef]
  32. W. Z. Yan, F. Liu, Y. Y. Lu, X. J. Wang, M. Yin, and Z. W. Pan, “Near infrared long-persistent phosphorescence in La3Ga5GeO14:Cr3+ phosphor,” Opt. Express18(19), 20215–20221 (2010). [CrossRef] [PubMed]
  33. A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater.24, 579 (1988).
  34. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000). [CrossRef]
  35. J. N. Shan, M. Uddi, N. Yao, and Y. G. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater.20(20), 3530–3537 (2010). [CrossRef]
  36. R. Martín-Rodríguez, R. Valiente, F. Rodríguez, F. Piccinelli, A. Speghini, and M. Bettinelli, “Temperature dependence and temporal dynamics of Mn2+ upconversion luminescence sensitized by Yb3+ in codoped LaMgAl11O19,” Phys. Rev. B82(7), 075117 (2010). [CrossRef]
  37. P. Gerner, C. Reinhard, and H. U. Güdel, “Cooperative near-IR to visible photon upconversion in Yb3+-doped MnCl2 and MnBr2: Comparison with a series of Yb3+-Doped Mn2+ halides,” Chem. Eur. J.10(19), 4735–4741 (2004). [CrossRef] [PubMed]
  38. P. Gerner, O. S. Wenger, R. Valiente, and H. U. Güdel, “Green and red light emission by upconversion from the near-IR in Yb3+ doped CsMnBr3.,” Inorg. Chem.40(18), 4534–4542 (2001). [CrossRef] [PubMed]
  39. R. Valiente, O. Wenger, and H. U. Güdel, “New photon upconversion processes in Yb3+ doped CsMnCl3 and RbMnCl3,” Chem. Phys. Lett.320(5-6), 639–644 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited