OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 656–661

Silica cladded Nd3+:YAG single crystal core optical fiber and its submicron residual stress detection

Wei-Lun Wang, Yung-Hsin Tseng, Wood-Hi Cheng, and Jau-Sheng Wang  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 4, pp. 656-661 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2202 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Nd3+:YAG single crystal core optical fiber waveguide was successfully fabricated by the sapphire tube-assisted CO2 laser-heated pedestal growth (LHPG) technique with decent quality. Furthermore, a stress detection (mapping) technique with submicron spatial resolution was demonstrated with Nd3+ as distributive stress detection probe and scanning near field optical microscope (SNOM) as detection tool.

© 2014 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Materials

Original Manuscript: December 16, 2013
Revised Manuscript: January 16, 2014
Manuscript Accepted: January 16, 2014
Published: March 10, 2014

Wei-Lun Wang, Yung-Hsin Tseng, Wood-Hi Cheng, and Jau-Sheng Wang, "Silica cladded Nd3+:YAG single crystal core optical fiber and its submicron residual stress detection," Opt. Mater. Express 4, 656-661 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. M. Fejer, G. A. Magel, and R. L. Byer, “High-speed high-resolution fiber diameter variation measurement system,” Appl. Opt.24(15), 2362–2368 (1985). [CrossRef] [PubMed]
  2. C. A. Burrus and L. A. Coldren, “Growth of single-crystal sapphire-clad ruby fibers,” Appl. Phys. Lett.31(6), 383–384 (1977). [CrossRef]
  3. E. Snitzer, “Frequency control of a Nd3+ glass laser,” Appl. Opt.5(1), 121–125 (1966). [CrossRef] [PubMed]
  4. E. Snitzer, “Neodymium glass laser,” Proc. 3rd Int. Conf. Quantum Electronics, Paris, France, 999–1019(1963).
  5. X. S. Zhu, J. A. Harrington, B. T. Laustsen, and L. G. DeShazer, “Single-crystal YAG optics for the transmission of high energy laser energy,” Proc. SPIE7894, 789415 (2011). [CrossRef]
  6. T. Schreiber, H. Schultz, O. Schmidt, F. Röser, J. Limpert, and A. Tünnermann, “Stress-induced birefringence in large-mode-area micro-structured optical fibers,” Opt. Express13(10), 3637–3646 (2005). [CrossRef] [PubMed]
  7. J. D. Foster and L. M. Osterink, “Index of refraction and expansion thermal coefficients of Nd:YAG,” Appl. Opt.7(12), 2428–2429 (1968). [CrossRef] [PubMed]
  8. H. Hua and Y. K. Vohra, “Pressure-induced blueshift of Nd3+ fluorescence emission in YAlO3:Near infrared pressure sensor,” Appl. Phys. Lett.71(18), 2602 (1997). [CrossRef]
  9. M. Pokhrel, N. Ray, G. A. Kumar, and D. K. Sardar, “Comparative studies of the spectroscopic properties of Nd3+:YAG nanocrystals, transparent ceramic and single crystal,” Opt. Mater. Express2(3), 235–249 (2012). [CrossRef]
  10. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962). [CrossRef]
  11. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000). [CrossRef]
  12. R. K. Nubling and J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt.36(24), 5934–5940 (1997). [CrossRef] [PubMed]
  13. K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express16(16), 12264–12271 (2008). [CrossRef] [PubMed]
  14. D. E. Eakins, M. Held, M. G. Norton, and D. F. Bahr, “A study of fracture and defects in single crystal YAG,” J. Cryst. Growth267(3-4), 502–509 (2004). [CrossRef]
  15. Joint Commission on Powder Diffraction Standards (JCPDS) card No. 88–2048, International Center for Diffraction Data, PCPDFWIN version 2.2 (2001).
  16. M. J. F. Digonnet and C. J. Gaeta, “Theoretical analysis of optical fiber laser amplifiers and oscillators,” Appl. Opt.24(3), 333–342 (1985). [CrossRef] [PubMed]
  17. S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006). [CrossRef]
  18. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, E. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009). [CrossRef]
  19. S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion implanted Nd:YAG waveguide lasers,” IEEE J. Quantum Electron.27(3), 428–433 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited