OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 689–700

Femtosecond-laser induced ablation of silicate glasses and the intrinsic dissociation energy

Moritz Grehn, Thomas Seuthe, Michael Höfner, Nils Griga, Christoph Theiss, Alexandre Mermillod-Blondin, Markus Eberstein, Hans Eichler, and Jörn Bonse  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 4, pp. 689-700 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1995 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The relation between ablation threshold fluence upon femtosecond laser pulse irradiation and the average dissociation energy density of silicate based multicomponent glass is studied. A simple model based on multiphoton absorption quantifies the absorbed energy density at the ablation threshold fluence. This energy density is compared to a calculated energy density which is necessary to decompose the glass compound into its atomic constituents. The results confirm that this energy density is a crucial intrinsic material parameter for the description of the femtosecond laser ablation threshold fluence of dielectrics.

© 2014 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(190.4180) Nonlinear optics : Multiphoton processes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Glass and Other Amorphous Materials

Original Manuscript: January 6, 2014
Revised Manuscript: March 4, 2014
Manuscript Accepted: March 4, 2014
Published: March 13, 2014

Moritz Grehn, Thomas Seuthe, Michael Höfner, Nils Griga, Christoph Theiss, Alexandre Mermillod-Blondin, Markus Eberstein, Hans Eichler, and Jörn Bonse, "Femtosecond-laser induced ablation of silicate glasses and the intrinsic dissociation energy," Opt. Mater. Express 4, 689-700 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004). [CrossRef] [PubMed]
  2. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B13(2), 459–468 (1996). [CrossRef]
  3. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949 (2002). [CrossRef]
  4. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004). [CrossRef]
  5. T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys.95(9), 5166–5171 (2004). [CrossRef]
  6. C. Mézel, A. Bourgeade, and L. Hallo, “Surface structuring by ultrashort laser pulses: A review of photoionization models,” Phys. Plasmas17(11), 113504 (2010). [CrossRef]
  7. N. S. Shcheblanov, E. P. Silaeva, and T. E. Itina, “Electronic excitation and relaxation processes in wide band gap dielectric materials in the transition region of the Keldysh parameter,” Appl. Surf. Sci.258(23), 9417–9420 (2012). [CrossRef]
  8. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  9. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994). [CrossRef]
  10. N. Sanner, O. Utéza, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Toward determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett.96(7), 071111 (2010). [CrossRef]
  11. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80(18), 4076–4079 (1998). [CrossRef]
  12. P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond-and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999). [CrossRef]
  13. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71(11), 115109 (2005). [CrossRef]
  14. B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B79(15), 155424 (2009). [CrossRef]
  15. B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B84(9), 094104 (2011). [CrossRef]
  16. A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003). [CrossRef]
  17. D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010). [CrossRef]
  18. D. von der Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser–solid interaction,” J. Opt. Soc. Am. B13(1), 216–222 (1996). [CrossRef]
  19. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007). [CrossRef]
  20. G. M. Petrov and J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. B- At. Mol. Opt.41(2), 025601 (2008). [CrossRef]
  21. T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, and M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy,” Opt. Mater. Express3(6), 755–764 (2013). [CrossRef]
  22. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003). [CrossRef]
  23. D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011). [CrossRef]
  24. D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004). [CrossRef]
  25. M. Grehn, F. Reinhardt, J. Bonse, M. Eberstein, and T. Seuthe, “Response to “Comment on 'Femtosecond laser-induced ablation of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,”' [Appl. Phys. Lett. 102, 196101 (2012)],” Appl. Phys. Lett.102(19), 196102 (2013). [CrossRef]
  26. T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012). [CrossRef]
  27. M. Grehn, T. Seuthe, F. Reinhardt, M. Höfner, N. Griga, M. Eberstein, and J. Bonse, “Debris of potassium-magnesium silicate glass generated by femtosecond laser-induced ablation in air: an analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. (2013), doi:. [CrossRef]
  28. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP20, 1307–1314 (1965).
  29. P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys.76(3), 036502 (2013). [CrossRef] [PubMed]
  30. V. E. Gruzdev and J. K. Chen, “Laser-induced ionization and intrinsic breakdown of wide band-gap solids,” Appl. Phys., A Mater. Sci. Process.90(2), 255–261 (2007). [CrossRef]
  31. D. Bäuerle, Laser Processing and Chemistry, 4th ed. (Springer-Verlag, 2011)
  32. L. Jiang and H. L. Tsai, “Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse,” Int. J. Heat Mass Tran.48(3-4), 487–499 (2005). [CrossRef]
  33. M. Watanabe, Y. Kuroiwa, and S. Ito, “Study of femtosecond laser ablation of multicomponent glass,” Reports Res. Lab. Asahi Glass55, 27–31 (2005).
  34. N. Varkentina, N. Sanner, M. Lebugle, M. Sentis, and O. Utéza, “Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency,” J. Appl. Phys.114(17), 173105 (2013). [CrossRef]
  35. S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci.186(1-4), 364–368 (2002). [CrossRef]
  36. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express1(4), 711–723 (2011). [CrossRef]
  37. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett.7(5), 196–198 (1982). [CrossRef] [PubMed]
  38. A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys.96(9), 5316–5323 (2004). [CrossRef]
  39. A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B72(8), 085128 (2005). [CrossRef]
  40. A. I. Priven, “General method for calculating the properties of oxide glasses and glass forming melts from their composition and temperature,” Glass Technol.45, 244–254 (2004).
  41. S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett.62(23), 3049 (1993). [CrossRef]
  42. M. Grehn, T. Seuthe, W.-J. Tsai, M. Höfner, A. W. Achtstein, A. Mermillod-Blondin, M. Eberstein, H. J. Eichler, and J. Bonse, “Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses,” Opt. Mater. Express3(12), 2132–2140 (2013). [CrossRef]
  43. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B73(3), 035101 (2006). [CrossRef]
  44. K. H. Sun, “Fundamental condition of glass formation,” J. Am. Ceram. Soc.30(9), 277–281 (1947). [CrossRef]
  45. K. H. Sun and M. L. Huggins, “Energy Additivity in Oxygen-containing Crystals and Glasses,” J. Phys. Colloid Chem.51(2), 438–443 (1947). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited