OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 701–709

ZnO nanorods for efficient third harmonic UV generation

Susanta Kumar Das, Frank Güell, Ciarán Gray, Prasanta Kumar Das, Ruediger Grunwald, and Enda McGlynn  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 4, pp. 701-709 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3207 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



ZnO nanorods grown by both high temperature vapour phase transport and low temperature chemical bath deposition are very promising sources for UV third harmonic generation. Material grown by both methods show comparable efficiencies, in both cases an order of magnitude higher than surface third harmonic generation at the quartz-air interface of a bare quartz substrate. This result is in stark contrast to the linear optical properties of ZnO nanorods grown by these two methods, which show vastly different PL efficiencies. The third harmonic generated signal is analysed using intensity dependent measurements and interferometric frequency resolved optical gating, allowing extraction of the laser pulse parameters. The comparable levels of efficiency of ZnO grown by these very different methods as sources for third harmonic UV generation provides a broad suite of possible growth methods to suit various substrates, coverage and scalability requirements. Potential application areas range from interferometric frequency resolved optical gating characterization of few cycle fs pulses to single cell UV irradiation for biophysical studies.

© 2014 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optical Materials

Original Manuscript: January 22, 2014
Revised Manuscript: March 3, 2014
Manuscript Accepted: March 9, 2014
Published: March 13, 2014

Susanta Kumar Das, Frank Güell, Ciarán Gray, Prasanta Kumar Das, Ruediger Grunwald, and Enda McGlynn, "ZnO nanorods for efficient third harmonic UV generation," Opt. Mater. Express 4, 701-709 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small2(8-9), 944–961 (2006). [CrossRef] [PubMed]
  2. D. Byrne, E. McGlynn, J. Cullen, and M. O. Henry, “A catalyst-free and facile route to periodically ordered and c-axis aligned ZnO nanorod arrays on diverse substrates,” Nanoscale3(4), 1675–1682 (2011). [CrossRef] [PubMed]
  3. E. McGlynn, M. O. Henry, and J.-P. Mosnier, “ZnO wide bandgap semiconductor nanostructures: growth, characterisation and applications,” in Handbook of Nanoscience and Technology vol. II, A.V. Narlikar and Y.Y.Fu, eds. (Oxford University Press, 2009).
  4. G. I. Petrov, V. Shcheslavskiy, V. V. Yakovlev, I. Ozerov, E. Chelnokov, and W. Marine, “Efficient third-harmonic generation in a thin nanocrystalline film of ZnO,” Appl. Phys. Lett.83(19), 3993–3995 (2003). [CrossRef]
  5. K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire,” Nano Lett.12(2), 833–838 (2012). [CrossRef] [PubMed]
  6. S. K. Das, M. Bock, C. ONeil, R. Grunwald, K. Lee, H. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett.93(18), 181112 (2008). [CrossRef]
  7. K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi5(8c), 2671–2674 (2008). [CrossRef]
  8. Y. Kobayashi, D. Yoshitomi, K. Iwata, H. Takada, and K. Torizuka, “Ultrashort pulse characterization by ultra-thin ZnO, GaN, and AlN crystals,” Opt. Express15(15), 9748–9754 (2007). [CrossRef] [PubMed]
  9. S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express19(18), 16985–16995 (2011). [CrossRef] [PubMed]
  10. C. Zhang, F. Zhang, S. Qian, N. Kumar, J. Hahm, and J. Xu, “Multi-photon absorption induced amplified spontaneous emission from biocatalyst synthesized ZnO nanorods,” Appl. Phys. Lett.92(23), 233116 (2008). [CrossRef]
  11. D. Sridhar, X. Jining, J. K. Abraham, and V. K. Varadan, “Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe,” Proc. SPIE6528, 65281L (2007). [CrossRef]
  12. C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005). [CrossRef]
  13. J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, and B. Chen, "The Photodynamic Effect of Different Size ZnO Nanoparticles on Cancer Cell Proliferation In Vitro," Nanoscale Res. Lett.5(6), 1063–1071 (2010). [CrossRef]
  14. S. M. Al-Hilli, M. Willander, A. Öst, and P. Strålfors, “ZnO nanorods as an intracellular sensor for pH measurements,” J. Appl. Phys.102(8), 084304 (2007). [CrossRef]
  15. D. Byrne, E. McGlynn, M. Biswas, M. O. Henry, K. Kumar, and G. Hughes, “A Study of drop-coated and chemical bath-deposited buffer layers for vapor phase deposition of large area, aligned, zinc oxide nanorod arrays,” Cryst. Growth Des.10(5), 2400–2408 (2010). [CrossRef]
  16. D. Byrne, E. McGlynn, M. O. Henry, K. Kumar, and G. Hughes, “A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays,” Thin Solid Films518(16), 4489–4492 (2010). [CrossRef]
  17. F. Güell, J. O. Osso, A. R. Goni, A. Cornet, and J. R. Morante, “Synthesis and optical spectroscopy of ZnO nanowires,” Superlattices Microstruct.45(4-5), 271–276 (2009). [CrossRef]
  18. F. Güell, J. O. Ossó, A. R. Goñi, A. Cornet, and J. R. Morante, “Direct imaging of the visible emission bands from individual ZnO nanowires by near-field optical spectroscopy,” Nanotechnology20(31), 315701 (2009). [CrossRef] [PubMed]
  19. T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A52(5), 4116–4125 (1995). [CrossRef] [PubMed]
  20. U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, M. Schmidbauer, and W. Seeber, “Second harmonic performance of a-axis oriented ZnO nanolayers on sapphire substrates,” Appl. Phys. Lett.87(17), 171108 (2005). [CrossRef]
  21. G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express13(7), 2617–2626 (2005). [CrossRef] [PubMed]
  22. G. Stibenz and G. Steinmeyer, “Structures of interferometric frequency-resolved optical gating,” IEEE J. Sel. Top. Quantum Electron.12(2), 286–296 (2006). [CrossRef]
  23. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010). [CrossRef] [PubMed]
  24. http://www.rp-photonics.com/chromatic_dispersion.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited