OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 710–718

Thermal and optical properties of La2O3-Nb2O5 high refractive index glasses

Atsunobu Masuno, Hiroyuki Inoue, Kohei Yoshimoto, and Yasuhiro Watanabe  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 4, pp. 710-718 (2014)
http://dx.doi.org/10.1364/OME.4.000710


View Full Text Article

Enhanced HTML    Acrobat PDF (2183 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

(100−x)La2O3-xNb2O5 glasses with high refractive indices (>2.1) and low wavelength dispersion were prepared by containerless processing. All the glasses were colorless and transparent in the visible region. The glass forming region was divided into two regions: a high-La2O3-content (39 ≤ x ≤ 42) region and a high-Nb2O5-content (60 ≤ x ≤ 75) region. The dependence of the physical properties on the composition for these two types of glasses was different, implying that the high-La2O3-content glasses (La glasses) and high-Nb2O5-content glasses (Nb glasses) were intrinsically different. A large difference in the molar volumes of the two types of glasses indicated that the Nb glasses were more densely packed than the La glasses. Furthermore, the oxygen polarizabilities estimated from the molar volumes and refractive indices were greater than 2.43 Å3 for the La glasses, while those for the Nb glasses decreased from 2.43 Å3 with decreasing x. The large oxygen polarizabilities, as compared to those of conventional optical glasses, indicate a particularly high degree of ionic character for the component elements in the glasses. These results suggest that both the La and Nb glasses are desirable materials for high-valued optics, such as lenses with high power and high resolution as well as wide viewing angles used for a digital camera in a smartphone.

© 2014 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties

ToC Category:
Glass and Other Amorphous Materials

History
Original Manuscript: February 18, 2014
Revised Manuscript: March 9, 2014
Manuscript Accepted: March 9, 2014
Published: March 13, 2014

Citation
Atsunobu Masuno, Hiroyuki Inoue, Kohei Yoshimoto, and Yasuhiro Watanabe, "Thermal and optical properties of La2O3-Nb2O5 high refractive index glasses," Opt. Mater. Express 4, 710-718 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-4-710


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. H. Dumbaugh and J. Lapp, “Heavy-metal oxide glasses,” J. Am. Ceram. Soc.75(9), 2315–2326 (1992). [CrossRef]
  2. H. Bach and N. Neuroth, The Properties of Optical Glass (Springer, 1995).
  3. W. Zachariasen, “The atomic arrangement in glass,” J. Am. Chem. Soc.54(10), 3841–3851 (1932). [CrossRef]
  4. K.-H. Sun, “Fundamental condition of glass formation,” J. Am. Ceram. Soc.30(9), 277–281 (1947). [CrossRef]
  5. S. Kohara, K. Suzuya, K. Takeuchi, C.-K. Loong, M. Grimsditch, J. K. R. Weber, J. A. Tangeman, and T. S. Key, “Glass formation at the limit of insufficient network formers,” Science303(5664), 1649–1652 (2004). [CrossRef] [PubMed]
  6. S. Kohara, J. Akola, H. Morita, K. Suzuya, J. K. R. Weber, M. C. Wilding, and C. J. Benmore, “Relationship between topological order and glass forming ability in densely packed enstatite and forsterite composition glasses,” Proc. Natl. Acad. Sci. U.S.A.108(36), 14780–14785 (2011). [CrossRef] [PubMed]
  7. J. K. R. Weber, J. G. Abadie, A. D. Hixson, P. C. Nordine, and G. A. Jerman, “Glass formation and polyamorphism in rare-earth oxide–aluminum oxide compositions,” J. Am. Ceram. Soc.83(8), 1868–1872 (2000). [CrossRef]
  8. L. B. Skinner, A. C. Barnes, and W. Crichton, “Novel behaviour and structure of new glasses of the type Ba-Al-O and Ba-Al-Ti-O produced by aerodynamic levitation and laser heating,” J. Phys. Condens. Matter18(32), L407–L414 (2006). [CrossRef] [PubMed]
  9. J. Akola, S. Kohara, K. Ohara, A. Fujiwara, Y. Watanabe, A. Masuno, T. Usuki, T. Kubo, A. Nakahira, K. Nitta, T. Uruga, J. K. Weber, and C. J. Benmore, “Network topology for the formation of solvated electrons in binary CaO-Al2O3 composition glasses,” Proc. Natl. Acad. Sci. U.S.A.110(25), 10129–10134 (2013). [CrossRef] [PubMed]
  10. Y. Watanabe, A. Masuno, and H. Inoue, “Glass formation of rare earth aluminates by containerless processing,” J. Non-Cryst. Solids358(24), 3563–3566 (2012). [CrossRef]
  11. M. C. Wilding, C. J. Benmore, and P. F. Mcmillan, “A neutron diffraction study of yttrium- and lanthanum-aluminate glasses,” J. Non-Cryst. Solids297(2-3), 143–155 (2002). [CrossRef]
  12. A. C. Barnes, L. B. Skinner, P. S. Salmon, A. Bytchkov, I. Pozdnyakova, T. O. Farmer, and H. E. Fischer, “Liquid-liquid phase transition in supercooled yttria-alumina,” Phys. Rev. Lett.103(22), 225702 (2009). [CrossRef] [PubMed]
  13. J. Yu, Y. Arai, T. Masaki, T. Ishikawa, S. Yoda, S. Kohara, H. Taniguchi, M. Itoh, and Y. Kuroiwa, “Fabrication of BaTi2O5 glass-ceramics with unusual dielectric properties during crystallization,” Chem. Mater.18(8), 2169–2173 (2006). [CrossRef]
  14. J. Yu, S. Kohara, K. Itoh, S. Nozawa, S. Miyoshi, Y. Arai, A. Masuno, H. Taniguchi, M. Itoh, M. Takata, T. Fukunaga, S. Koshihara, Y. Kuroiwa, and S. Yoda, “Comprehensive structural study of glassy and metastable crystalline BaTi2O5,” Chem. Mater.21(2), 259–263 (2009). [CrossRef]
  15. Y. Arai, K. Itoh, S. Kohara, and J. Yu, “Refractive index calculation using the structural properties of La4Ti9O24 glass,” J. Appl. Phys.103(9), 094905 (2008). [CrossRef]
  16. A. Masuno, H. Inoue, J. Yu, and Y. Arai, “Refractive index dispersion, optical transmittance, and Raman scattering of BaTi2O5 glass,” J. Appl. Phys.108(6), 063520 (2010). [CrossRef]
  17. A. Masuno, Y. Watanabe, H. Inoue, Y. Arai, J. Yu, and M. Kaneko, “Glass-forming region and high refractive index of TiO2-based glasses prepared by containerless processing,” Phys. Status Solidi C9(12), 2424–2427 (2012). [CrossRef]
  18. H. Inoue, Y. Watanabe, A. Masuno, J. Yu, and M. Kaneko, “Effect of substituting Al2O3 and ZrO2 on thermal and optical properties of high refractive index La2O3–TiO2 glass system prepared by containerless processing,” Opt. Mater.33(12), 1853–1857 (2011). [CrossRef]
  19. A. Masuno and H. Inoue, “High refractive index of 0.30La2O3– 0.70Nb2O5 glass prepared by containerless processing,” Appl. Phys. Express3(10), 102601 (2010). [CrossRef]
  20. A. Masuno, S. Kohara, A. C. Hannon, E. Bychkov, and H. Inoue, “Drastic connectivity change in high refractive index lanthanum niobate glasses,” Chem. Mater.25(15), 3056–3061 (2013). [CrossRef]
  21. K. Yoshimoto, A. Masuno, H. Inoue, and Y. Watanabe, “Transparent and high refractive index La2O3–WO3 glass prepared using containerless processing,” J. Am. Ceram. Soc.95(11), 3501–3504 (2012). [CrossRef]
  22. H. Kozuka, R. Ota, and N. Soga, “Preparation and properties of binary oxide glasses containing rare earth oxides,” J. Soc. Mater. Sci. Jpn.35(388), 73–79 (1986). [CrossRef]
  23. O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data, Physical Science Data 15, Part B (single-component and binary non-silicate oxide glasses) (Elsevier, 1985).
  24. F. Vullum, F. Nitsche, S. M. Selbach, and T. Grande, “Solid solubility and phase transitions in the system LaNb1−xTaxO4,” J. Solid State Chem.181(10), 2580–2585 (2008). [CrossRef]
  25. N. Kitamura, K. Fukumi, J. Nakamura, T. Hidaka, H. Hashima, Y. Mayumi, and J. Nishii, “Optical properties of zinc bismuth phosphate glass,” Mater. Sci. Eng. B161(1-3), 91–95 (2009). [CrossRef]
  26. S. Fujino, H. Takebe, and K. Morinaga, “Measurements of Refractive Indexes and Factors Affecting Dispersion in Oxide Glasses,” J. Am. Ceram. Soc.78(5), 1179–1184 (1995). [CrossRef]
  27. S. Hirota and T. Izumitani, “Effect of cations on the inherent absorption wavelength and the oscillator strength of ultraviolet absorptions in borate glasses,” J. Non-Cryst. Solids29(1), 109–117 (1978). [CrossRef]
  28. V. Dimitrov and T. Komatsu, “Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses,” J. Non-Cryst. Solids249(2-3), 160–179 (1999). [CrossRef]
  29. V. Dimitrov and T. Komatsu, “Interionic interactions, electronic polarizability and optical basicity of oxide glasses,” J. Ceram. Soc. Jpn.108(1256), 330–338 (2000). [CrossRef]
  30. V. Dimitrov and T. Komatsu, “Classification of oxide glasses: A polarizability approach,” J. Solid State Chem.178(3), 831–846 (2005). [CrossRef]
  31. V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys.79(3), 1736–1740 (1996). [CrossRef]
  32. T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, R. Sato, and V. Dimitrov, “Electronic polarizability, optical basicity, and interaction parameter of La2O3 and related glasses,” J. Appl. Phys.91(5), 2942–2950 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited