OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 739–752

Effect of substitution of lutetium by gadolinium on emission characteristics of (LuxGd1-x)2SiO5: Sm3+ single crystals

W. Ryba-Romanowski, A. Strzęp, R. Lisiecki, M. Berkowski, H. Rodriguez-Rodriguez, and I.R. Martin  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 4, pp. 739-752 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1749 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single crystals of (LuxGd1-x)2SiO5:Sm (0.5 at%) with x = 0.19 (81% Gd3+) and x = 0.11 (89% Gd3+) belonging respectively to the C2/c and P21/c space groups were grown by the Czochralski method under nitrogen atmosphere. Detailed investigation of their spectroscopic properties were performed with the aim of understanding the effect of structural modification on emission characteristics of incorporated Sm3+ ions with a special attention directed to a laser potential associated with yellow emission line. It was inferred from low temperature optical spectra that almost all emission intensity in the host with C2/c symmetry comes from one of two available Sm3+ sites, whereas two Sm3+ sites contribute to emission in the host with P21/c symmetry. Excitation spectra of Sm3+ emission recorded in the VUV-UV region between 100 nm and 350 nm made it possible to locate the energy of CT transition at about 6.11 eV and to assess the low energy limit for the 4f5→ 4f45d1 transitions of Sm3+ to about 6.81 eV. It implies that in the two systems studied these energies are advantageously high thereby preventing the contribution of intense allowed transitions to an adverse excited state absorption of both blue pump radiation and yellow emission. Experiments of optical amplification of yellow emission were performed employing a pump-and-probe technique in order to verify this implication. It was found that for a LGSO:Sm3+ crystal having the C2/c symmetry an increase of the pump power density from 20 mJ/cm2 to 50 mJ/cm2 at a constant power probe density of 150 μW/cm2 brings about a positive gain growing from about 0.25 to 2 [cm−1]. In the same conditions a maximum gain value of 1 cm−1 was measured for LGSO:Sm3+ crystal having the P21/c symmetry. It was concluded that the former system is promising for the design of all-solid-state yellow lasers.

© 2014 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

ToC Category:
Laser Materials

Original Manuscript: January 21, 2014
Revised Manuscript: March 6, 2014
Manuscript Accepted: March 6, 2014
Published: March 18, 2014

W. Ryba-Romanowski, A. Strzęp, R. Lisiecki, M. Berkowski, H. Rodriguez-Rodriguez, and I.R. Martin, "Effect of substitution of lutetium by gadolinium on emission characteristics of (LuxGd1-x)2SiO5: Sm3+ single crystals," Opt. Mater. Express 4, 739-752 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Suzuki, T. A. Tombrello, C. L. Melcher, and J. S. Schweitzer, “UV and gamma-ray excited luminescence of cerium-doped rare earth oxyorthosilicates,” Nucl. Instrum. Methods Phys. Res.320(1-2), 263–272 (1992). [CrossRef]
  2. C. L. Melcher and J. S. Schweitzer, “A promising new scintillator: cerium-doped lutetium oxyorthosilicate,” Nucl. Instrum. Methods Phys. Res. A314(1), 212–214 (1992). [CrossRef]
  3. N. V. Kuleshov, V. G. Shcherbitsky, A. A. Lagatsky, V. P. Mikhailov, B. I. Minkov, T. Danger, T. Sandrock, and G. Huber, “Spectroscopy, excited-state absorption and stimulated emission in Pr3+-doped Gd2SiO5 and Y2SiO5 crystals,” J. Lumin.71(1), 27–35 (1997). [CrossRef]
  4. G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, and M. Berkowski, “Dy-doped Lu2SiO5 single crystal: spectroscopic characteristics and luminescence dynamics,” Appl. Phys. B99(1-2), 285–297 (2010). [CrossRef]
  5. R. Lisiecki, G. Dominiak-Dzik, P. Solarz, W. Ryba-Romanowski, M. Berkowski, and M. Głowacki, “Optical spectra and luminescence dynamics of the Dy-doped Gd2SiO5 single crystal,” Appl. Phys. B98(2-3), 337–346 (2010). [CrossRef]
  6. A. S. S. de Camargo, M. R. Davolos, and L. A. O. Nunes, “Spectroscopic characteristics of Er3+ in the two crystallographic sites of Gd2SiO5,” J. Phys. Condens. Matter14(12), 3353–3363 (2002). [CrossRef]
  7. Y. Chen, B. Liu, Ch. Shi, M. Kirm, M. True, S. Vielhauer, and G. Zimmerer, “Luminescent properties of Gd2SiO5 powder doped with Eu3+ under VUV–UV excitation,” J. Phys. Condens. Matter17(7), 1217–1224 (2005). [CrossRef]
  8. A. Strzęp, R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, and M. Berkowski, “Optical spectra and excited state relaxation dynamics of Sm3+ in Gd2SiO5 single crystal,” Appl. Phys. B106(1), 85–93 (2012). [CrossRef]
  9. C. Li, R. Moncorge, J. C. Souriau, C. Borel, and Ch. Wyon, “Efficient 2.05 μm room temperature Y2SiO5:Tm3+ cw laser,” Opt. Commun.101(5-6), 356–360 (1993). [CrossRef]
  10. C. Yan, G. Zhao, L. Su, X. Xu, L. Hang, and J. Xu, “„Growth and spectroscopic characteristics of Yb:GSO single crystal,” J. Phys. Condens. Matter18(4), 1325–1333 (2006). [CrossRef]
  11. M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B80(2), 171–176 (2005). [CrossRef]
  12. G. B. Loutts, A. I. Zagumennyi, S. V. Lavrishchev, Yu. D. Zavartsev, and P. A. Studenikin, “„Czochralski growth and characterization of (Lu1−xGdx)2SiO5 single crystals for scintillators,” J. Cryst. Growth174(1-4), 331–336 (1997). [CrossRef]
  13. O. Sidletskiy, V. G. Bondar, B. V. Grynyov, D. A. Kurtsev, V. N. Baumer, K. N. Belikov, Z. V. Shtitelman, S. A. Tkachenko, O. V. Zelenskaya, N. G. Starzhinsky, and V. A. Tarasov, “Growth of LGSO: Ce crystals by the Czochralski method,” Crystallogr. Rep.54(7), 1256–1260 (2009). [CrossRef]
  14. O. Sidletskiy, V. Bondar, B. Grinyov, D. Kurtsev, V. Baumer, K. Belikov, K. Katrunov, N. Starzhinsky, O. Tarasenko, V. Tarasov, and O. Zelenskaya, “Impact of Lu/Gd ratio and activator concentration on structure and scintillation properties of LGSO:Ce crystals,” J. Cryst. Growth312(4), 601–606 (2010). [CrossRef]
  15. M. Głowacki, G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, A. Strzęp, T. Runka, M. Drozdowski, V. Domukhovski, R. Diduszko, and M. Berkowski, “Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1-x)2SiO5 single crystals grown by the Czochralski method,” J. Solid State Chem.186, 268–277 (2012). [CrossRef]
  16. P. Haro-Gonzales, I. R. Martin, F. Lahoz, S. Gonzales-Perez, E. Cavalli, and N. E. Capuj, “Optical amplification in Er3+-doped transparent Ba2NaNb5O15 single crystal at 850 nm,” J. Appl. Phys.106(11), 113108 (2009). [CrossRef]
  17. J. Felsche, “The crystal chemistry of the rare-earth silicates,” Structure and Bonding13, 99–197 (1973). [CrossRef]
  18. L. Pidol, B. Viana, A. Galtayries, and P. Dorenbos, “Energy levels of lanthanide ions in a Lu2Si2O7 host,” Phys. Rev. B72(12), 125110 (2005). [CrossRef]
  19. P. Dorenbos, T. Shalapska, G. Stryganyuk, A. Gektin, and A. Voloshinovskii, “Spectroscopy and energy level location of the trivalent lanthanides in LiYP4O12,” J. Lumin.131(4), 633–639 (2011). [CrossRef]
  20. P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003). [CrossRef]
  21. K. Mori, M. Nakayama, and H. Nishimura, “Role of the core excitons formed by 4f-4f transitions of Gd3+ on Ce3+ scintillation in Gd2SiO5,” Phys. Rev. B67(16), 165206 (2003). [CrossRef]
  22. D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. García, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, “Optical losses and gain in silicon-rich silica waveguides containing Er ions,” J. Lumin.121(2), 249–255 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited