OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 753–763

Enhanced emission of fluorophores on shrink-induced wrinkled composite structures

Himanshu Sharma, Michelle A. Digman, Natasha Felsinger, Enrico Gratton, and Michelle Khine  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 4, pp. 753-763 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2114 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a manufacturable and scalable method for creating tunable wrinkled ferromagnetic-metallic structures to enhance fluorescence signals. Thin layers of nickel (Ni) and gold (Au) were deposited onto a pre-stressed thermoplastic (shrink wrap film) polymer. Heating briefly forced the metal films to buckle when the thermoplastic retracted, resulting in multi-scale composite ‘wrinkles’. This is the first demonstration of leveraging the plasmons in such hybrid nanostructures by metal enhanced fluorescence (MEF) in the near-infrared wavelengths. We observed more than three orders of magnitude enhancement in the fluorescence signal of a single molecule of goat anti-mouse immunoglobulin G (IgG) antibody conjugated to fluorescein isothiocyanate, FITC, (FITC-IgG) by two-photon excitation with these structures. These large enhancements in the fluorescence signal at the nanoscale gaps between the composite wrinkles corresponded to shortened lifetimes due to localized surface plasmons. To characterize these structures, we combined fluctuation correlation spectroscopy (FCS), fluorescence lifetime imaging microscopy (FLIM), and two-photon microscopy to spatially and temporally map the hot spots with high resolution.

© 2014 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.5770) Optics at surfaces : Roughness
(180.4315) Microscopy : Nonlinear microscopy
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: December 3, 2013
Revised Manuscript: January 27, 2014
Manuscript Accepted: January 28, 2014
Published: March 20, 2014

Himanshu Sharma, Michelle A. Digman, Natasha Felsinger, Enrico Gratton, and Michelle Khine, "Enhanced emission of fluorophores on shrink-induced wrinkled composite structures," Opt. Mater. Express 4, 753-763 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol.185(7), 1135–1148 (2009). [CrossRef] [PubMed]
  2. A. Dorfman, N. Kumar, and J. I. Hahm, “Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms,” Langmuir22(11), 4890–4895 (2006). [CrossRef] [PubMed]
  3. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Fluorescence enhancement of quantum dots enclosed in Au nanopockets with subwavelength aperture,” Appl. Phys. Lett.89(24), 241118 (2006). [CrossRef]
  4. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  5. P. Zhu and H. G. Craighead, “Zero-mode waveguides for single-molecule analysis,” Annu Rev Biophys41(1), 269–293 (2012). [CrossRef] [PubMed]
  6. R. M. Bakker, H. K. Yuan, Z. T. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92(4), 043101 (2008). [CrossRef]
  7. K. Balaa, E. Fort, and I. Nikon, “Surface plasmon enhanced TIRF imaging,” Imaging & Microscopy11(4), 55–56 (2009). [CrossRef]
  8. Y. N. Xia and N. J. Halas, “Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bull.30(05), 338–348 (2005). [CrossRef]
  9. Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle,” J. Fluoresc.17(6), 811–816 (2007). [CrossRef] [PubMed]
  10. L. C. Estrada, M. J. Roberti, S. Simoncelli, V. Levi, P. F. Aramendía, and O. E. Martínez, “Detection of low quantum yield fluorophores and improved imaging times using metallic nanoparticles,” J. Phys. Chem. B116(7), 2306–2313 (2012). [CrossRef] [PubMed]
  11. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt.8(4), S87–S93 (2006). [CrossRef]
  12. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998). [CrossRef]
  13. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997). [CrossRef]
  14. K. Uetsuki, P. Verma, P. Nordlander, and S. Kawata, “Tunable plasmon resonances in a metallic nanotip-film system,” Nanoscale4(19), 5931–5935 (2012). [CrossRef] [PubMed]
  15. N. C. Lindquist, T. W. Johnson, P. Nagpal, D. J. Norris, and S. H. Oh, “Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture,” Sci Rep3, 1857 (2013). [CrossRef] [PubMed]
  16. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods7(8), 603–614 (2010). [CrossRef] [PubMed]
  17. M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt.37(31), 7352–7356 (1998). [CrossRef] [PubMed]
  18. Y. Zhang, B. Kim, S. Yao, M. V. Bondar, and K. D. Belfield, “Controlled aggregation and enhanced two-photon absorption of a water-soluble squaraine dye with a poly(acrylic acid) template,” Langmuir29(35), 11005–11012 (2013). [CrossRef] [PubMed]
  19. J. H. Vella and A. M. Urbas, “Nanoplasmonic array enhancement of two-photon absorption in a dye film,” J. Phys. Chem. C116(32), 17169–17173 (2012). [CrossRef]
  20. W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B106(27), 6853–6863 (2002). [CrossRef]
  21. H. Kano and S. Kawata, “Two-photon-excited fluorescence enhanced by a surface plasmon,” Opt. Lett.21(22), 1848–1850 (1996). [CrossRef] [PubMed]
  22. I. Cohanoschi, S. Yao, K. D. Belfield, and F. E. Hernandez, “Effect of the concentration of organic dyes on their surface plasmon enhanced two-photon absorption cross section using activated Au nanoparticles,” J. Appl. Phys.101(8), 086112 (2007). [CrossRef]
  23. J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem.80(17), 6800–6804 (2008). [CrossRef] [PubMed]
  24. D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol.8(7), 512–516 (2013). [CrossRef] [PubMed]
  25. Y. Mély, G. Duportail, and L. A. Bagatolli, Fluorescent Methods to Study Biological Membranes (Springer, 2013)
  26. K. M. Berland, P. T. So, Y. Chen, W. W. Mantulin, and E. Gratton, “Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation,” Biophys. J.71(1), 410–420 (1996). [CrossRef] [PubMed]
  27. Y. X. Zhang, A. Dragan, and C. D. Geddes, “Broad wavelength range metal-enhanced fluorescence using nickel nanodeposits,” J. Phys. Chem. C113(36), 15811–15816 (2009). [CrossRef]
  28. S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers,” J. Phys. Chem. B107(43), 11871–11879 (2003). [CrossRef]
  29. J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Akerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small7(16), 2341–2347 (2011). [CrossRef] [PubMed]
  30. M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, M. Vasiliev, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys.15(7), 075024 (2013).
  31. J. Lim and S. A. Majetich, “Composite magnetic-plasmonic nanoparticles for biomedicine: manipulation and imaging,” Nano Today8(1), 98–113 (2013). [CrossRef]
  32. J. F. Torrado, J. B. González-Díaz, M. U. González, A. García-Martín, and G. Armelles, “Magneto-optical effects in interacting localized and propagating surface plasmon modes,” Opt. Express18(15), 15635–15642 (2010). [CrossRef] [PubMed]
  33. A. R. Halpern and R. M. Corn, “Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances,” ACS Nano7(2), 1755–1762 (2013). [CrossRef] [PubMed]
  34. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011). [CrossRef] [PubMed]
  35. D. Regatos, B. Sepúlveda, D. Fariña, L. G. Carrascosa, and L. M. Lechuga, “Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing,” Opt. Express19(9), 8336–8346 (2011). [CrossRef] [PubMed]
  36. G. Armelles, A. Cebollada, A. Garcia-Martin, and M. U. Gonzalez, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater.1(1), 10–35 (2013). [CrossRef]
  37. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010). [CrossRef]
  38. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun4, 1599 (2013). [CrossRef] [PubMed]
  39. J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater.24(10), OP36–OP41 (2012). [PubMed]
  40. S. Jayadev, J. Pegan, D. Dyer, J. McLane, J. Lim, and M. Khine, “Adaptive wettability-enhanced surfaces ordered on molded etched substrates using shrink film,” Smart Mater. Struct.22(1), 014014 (2013). [CrossRef]
  41. L. R. Freschauf, J. McLane, H. Sharma, and M. Khine, “Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics,” PLoS ONE7(8), e40987 (2012). [CrossRef] [PubMed]
  42. D. Nawarathna, N. Norouzi, J. McLane, H. Sharma, N. Sharac, T. Grant, A. Chen, S. Strayer, R. Ragan, and M. Khine, “Shrink-induced sorting using integrated nanoscale magnetic traps,” Appl. Phys. Lett.102(6), 063504 (2013). [CrossRef] [PubMed]
  43. B. Zhang and T. Cui, “Tunable shrink induced graphene composites for chemical sensors and microfluidics,” Proc. IEEE Micr. Elect. 1360–1363, (2012). [CrossRef]
  44. J. D. Pegan, A. Y. Ho, M. Bachman, and M. Khine, “Flexible shrink-induced high surface area electrodes for electrochemiluminescent sensing,” Lab Chip13(21), 4205–4209 (2013). [CrossRef] [PubMed]
  45. C. C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009). [CrossRef]
  46. C. C. Fu, G. Ossato, M. Long, M. A. Digman, A. Gopinathan, L. P. Lee, E. Gratton, and M. Khine, “Bimetallic nanopetals for thousand-fold fluorescence enhancements,” Appl. Phys. Lett.97(20), 203101 (2010). [CrossRef]
  47. M. D. Huntington, C. J. Engel, A. J. Hryn, and T. W. Odom, “Polymer nanowrinkles with continuously tunable wavelengths,” ACS Appl. Mater. Interfaces5(13), 6438–6442 (2013). [CrossRef] [PubMed]
  48. C. M. Gabardo, Y. J. Zhu, L. Soleymani, and J. M. Moran-Mirabal, “Bench-top fabrication of hierarchically structured high-surface-area electrodes,” Adv. Funct. Mater.23(24), 3030–3039 (2013). [CrossRef]
  49. C. G. L. Ferri, R. H. Inman, B. Rich, A. Gopinathan, M. Khine, and S. Ghosh, “Plasmon-induced enhancement of intra-ensemble FRET in quantum dots on wrinkled thin films,” Opt. Mater. Express3(3), 383–389 (2013). [CrossRef]
  50. L. Zhang, X. Y. Lang, A. Hirata, and M. W. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano5(6), 4407–4413 (2011). [CrossRef] [PubMed]
  51. H. W. Liu, L. Zhang, X. Y. Lang, Y. Yamaguchi, H. S. Iwasaki, Y. S. Inouye, Q. K. Xue, and M. W. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep.1, 1–5 (2011). [CrossRef] [PubMed]
  52. A. Chen, E. Lee, R. Tu, K. Santiago, A. Grosberg, C. Fowlkes, and M. Khine, “Integrated platform for functional monitoring of biomimetic heart sheets derived from human pluripotent stem cells,” Biomaterials35(2), 675–683 (2014). [CrossRef] [PubMed]
  53. A. Chen, D. K. Lieu, L. Freschauf, V. Lew, H. Sharma, J. X. Wang, D. Nguyen, I. Karakikes, R. J. Hajjar, A. Gopinathan, E. Botvinick, C. C. Fowlkes, R. A. Li, and M. Khine, “Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives,” Adv. Mater.23(48), 5785–5791 (2011). [CrossRef] [PubMed]
  54. Y. Y. Li, S. X. Dai, J. John, and K. R. Carter, “Superhydrophobic surfaces from hierarchically structured wrinkled polymers,” ACS Appl. Mater. Interfaces5(21), 11066–11073 (2013). [CrossRef] [PubMed]
  55. V. A. Trofimov and E. B. Tereshin, “Localization of light energy of a femtosecond laser pulse upon generation of the second harmonic in a one-dimensional nonlinear photonic crystal with alternating nonlinear response,” Opt. Spectrosc.104(5), 737–743 (2008). [CrossRef]
  56. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000). [CrossRef] [PubMed]
  57. M. Rubart, “Two-photon microscopy of cells and tissue,” Circ. Res.95(12), 1154–1166 (2004). [CrossRef] [PubMed]
  58. K. T. Takasaki, J. B. Ding, and B. L. Sabatini, “Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy,” Biophys. J.104(4), 770–777 (2013). [CrossRef] [PubMed]
  59. J. L. Valverde, Blood, Plasma, and Plasma Proteins: A Unique Contribution to Modern Healthcare (IOS Press, 2006)
  60. W. H. Zhang, F. Ding, W. D. Li, Y. X. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology23(22), 225301 (2012). [CrossRef] [PubMed]
  61. T. Lohmüller, L. Iversen, M. Schmidt, C. Rhodes, H. L. Tu, W. C. Lin, and J. T. Groves, “Single molecule tracking on supported membranes with arrays of optical nanoantennas,” Nano Lett.12(3), 1717–1721 (2012). [CrossRef] [PubMed]
  62. C. D. Geddes, A. Parfenov, D. Roll, I. Gryczynski, J. Malicka, and J. R. Lakowicz, “Silver fractal-like structures for metal-enhanced fluorescence: enhanced fluorescence intensities and increased probe photostabilities,” J. Fluoresc.13(3), 267–276 (2003). [CrossRef]
  63. M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J.94(2), L14–L16 (2008). [CrossRef] [PubMed]
  64. C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan, and E. Gratton, “Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue,” Proc. Natl. Acad. Sci. U.S.A.108(33), 13582–13587 (2011). [CrossRef] [PubMed]
  65. J. R. Lakowicz, J. Malicka, J. Huang, Z. Gryczynski, and I. Gryczynski, “Ultrabright fluorescein-labeled antibodies near silver metallic surfaces,” Biopolymers74(6), 467–475 (2004). [CrossRef] [PubMed]
  66. C. Tregidgo, J. A. Levitt, and K. Suhling, “Effect of refractive index on the fluorescence lifetime of green fluorescent protein,” J. Biomed. Opt.13(3), 031218 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited