OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 776–789

Efficient and low-threshold Alexandrite laser pumped by a single-mode diode

Ismail Yorulmaz, Ersen Beyatli, Adnan Kurt, Alphan Sennaroglu, and Umit Demirbas  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 4, pp. 776-789 (2014)
http://dx.doi.org/10.1364/OME.4.000776


View Full Text Article

Enhanced HTML    Acrobat PDF (1589 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a low-threshold and efficient Alexandrite laser that is pumped by only one state-of-the-art single-spatial-mode diode. The pump diode provided 170 mW of output power at 635 nm. In continuous wave (cw) laser experiments, we demonstrated lasing thresholds as low as 13 mW, slope efficiencies as high as 36%, output powers up to 48 mW, and a tuning range extending from 736 nm to 823 nm. Laser slope efficiency, laser output power, fluorescence lifetime, and emission intensity were further shown to decrease monotonically with increasing temperature. Pure cw operation could be obtained under most circumstances. However, self-Q-switching (SQS) was also observed in slightly misaligned laser cavities. During SQS, stable pulses with pulsewidths in the 5-15 μs range and pulse repetition rates in the 10-35 kHz range have been obtained. We believe that this compact and efficient Alexandrite laser system may be an attractive source for several applications.

© 2014 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3600) Lasers and laser optics : Lasers, tunable
(140.7300) Lasers and laser optics : Visible lasers
(160.3380) Materials : Laser materials

ToC Category:
Laser Materials

History
Original Manuscript: January 7, 2014
Revised Manuscript: March 16, 2014
Manuscript Accepted: March 19, 2014
Published: March 24, 2014

Virtual Issues
2013 Advanced Solid State Lasers (2013) Optics Express

Citation
Ismail Yorulmaz, Ersen Beyatli, Adnan Kurt, Alphan Sennaroglu, and Umit Demirbas, "Efficient and low-threshold Alexandrite laser pumped by a single-mode diode," Opt. Mater. Express 4, 776-789 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-4-776


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett.56(23), 2288–2290 (1990). [CrossRef]
  2. U. Demirbas, S. Eggert, and A. Leitenstorfer, “Compact and efficient Cr:LiSAF lasers pumped by one single-spatial-mode diode: a minimal cost approach,” J. Opt. Soc. Am. B29(8), 1894–1903 (2012). [CrossRef]
  3. B. K. Zhou, T. J. Kane, G. J. Dixon, and R. L. Byer, “Efficient, Frequency-Stable Laser-Diode-Pumped Nd:YAG Laser,” Opt. Lett.10(2), 62–64 (1985). [CrossRef] [PubMed]
  4. A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Femtosecond Nd:Glass Lasers Pumped by Single-Mode Laser Diodes and Mode Locked With Carbon Nanotube or Semiconductor Saturable Absorber Mirrors,” IEEE J. Sel. Top. Quantum Electron.18(1), 74–80 (2012). [CrossRef]
  5. R. Scheps, “Cr-LiCaAlF6 laser pumped by visible laser-diodes,” IEEE J. Quantum Electron.27(8), 1968–1970 (1991). [CrossRef]
  6. R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett.16(11), 820–822 (1991). [CrossRef] [PubMed]
  7. A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Efficient femtosecond Yb:YAG laser pumped by a single-mode laser diode,” Opt. Commun.284(16-17), 4049–4051 (2011). [CrossRef]
  8. E. Beyatli, S. Naghizadeh, A. Kurt, and A. Sennaroglu, “Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 mu m,” Appl. Phys. B109(2), 221–225 (2012). [CrossRef]
  9. J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett.4(6), 182–183 (1979). [CrossRef] [PubMed]
  10. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron.16(12), 1302–1315 (1980). [CrossRef]
  11. J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning of Alexandrite laser at elevated temperetures,” in Advanced Solid State Lasers (OSA, Salt Lake City, Utah, 1990).
  12. R. Frey, F. Derougemont, and C. H. Lee, “An Actively Mode-Locked Continuous Wave Alexandrite Laser,” Opt. Commun.73(3), 232–234 (1989). [CrossRef]
  13. R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun.97(5-6), 363–366 (1993). [CrossRef]
  14. J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite lasers - Development and performance,” IEEE J. Quantum Electron.21(10), 1568–1581 (1985). [CrossRef]
  15. E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-cycle Laser Pulse Generation and its Applications, F. X. Kärtner, ed. (Springer-Verlag, 2004), pp. 3–71.
  16. J. Kozub, B. Ivanov, A. Jayasinghe, R. Prasad, J. Shen, M. Klosner, D. Heller, M. Mendenhall, D. W. Piston, K. Joos, and M. S. Hutson, “Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-µm wavelength range,” Biomed. Opt. Express2(5), 1275–1281 (2011). [CrossRef] [PubMed]
  17. D. Bruneau, H. Cazeneuve, C. Loth, and J. Pelon, “Double-Pulse Dual-Wavelength Alexandrite Laser for Atmospheric Water Vapor Measurement,” Appl. Opt.30(27), 3930–3937 (1991). [CrossRef] [PubMed]
  18. D. Bruneau, T. A. des Lions, P. Quaglia, and J. Pelon, “Injection-Seeded Pulsed Alexandrite Laser for Differential Absorption Lidar Application,” Appl. Opt.33(18), 3941–3950 (1994). [CrossRef] [PubMed]
  19. P. Ponsardin, N. S. Higdon, B. E. Grossmann, and E. V. Browell, “Spectral Control of an Alexandrite Laser for an Airborne Water-Vapor Differential Absorption Lidar System,” Appl. Opt.33(27), 6439–6450 (1994). [CrossRef] [PubMed]
  20. X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV outputfrom a CW diode array-pumped tunable alexandrite laser,” in Lasers and Electro-Optics (OSA/CLEO, 2005).
  21. M. J. Damzen, G. M. Thomas, and A. Minassian, “Multi-watt diode-pumped alexandrite laser operation,” in CLEO Europe (Optical Society of America, Munich, 2013).
  22. E. Beyatli, I. Baali, B. Sumpf, G. Erbert, A. Leitenstorfer, A. Sennaroglu, and U. Demirbas, “Tapered diode-pumped continuous-wave alexandrite laser,” J. Opt. Soc. Am. B30(12), 3184–3192 (2013). [CrossRef]
  23. W. Koechner, Solid-State Laser Engineering, 4 ed., Springer Series in Optical Sciences (Springer, 1996), Vol. 1.
  24. V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006). [CrossRef]
  25. M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quencing of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B9(12), 2271–2273 (1992). [CrossRef]
  26. M. L. Shand and H. P. Jenssen, “Temperature-Dependence of the Excited-State Absorption of Alexandrite,” IEEE J. Quantum Electron.19(3), 480–484 (1983). [CrossRef]
  27. R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B Condens. Matter32(5), 2788–2797 (1985). [CrossRef] [PubMed]
  28. A. B. Suchocki, G. D. Gilliland, R. C. Powell, J. M. Bowen, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” J. Lumin.37(1), 29–37 (1987). [CrossRef]
  29. P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical Amplification Characteristics of Cr-Lisaf and Cr-Licaf under Flashlamp-Pumping,” IEEE J. Quantum Electron.30(5), 1259–1266 (1994). [CrossRef]
  30. V. Pilla, H. P. Jenssen, A. Cassanho, and T. Catunda, “Discrimination between thermal quenching of the fluorescence and Auger upconversion processes using thermal lens technique,” Opt. Commun.271(1), 184–189 (2007). [CrossRef]
  31. I. Freund, “SELF-Q-SWITCHING IN RUBY LASERS,” Appl. Phys. Lett.12(11), 388 (1968). [CrossRef]
  32. E. Beyatlı, A. Sennaroglu, and U. Demirbas, “Self-Q-Switched Cr:LiCAF Laser,” J. Opt. Soc. Am. B30(4), 914–921 (2013). [CrossRef]
  33. A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. QE4(10), 692–698 (1968). [CrossRef]
  34. M. Birnbaum and C. L. Fincher, “Self-Q-switched Nd+3:YAG and ruby lasers,” Proceedings of the IEEE57, 804-& (1969). [CrossRef]
  35. B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlf(6): Cr3+ oscillator,” Opt. Commun.149(4-6), 301–306 (1998). [CrossRef]
  36. J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable Cw Alexandrite Laser,” IEEE J. Quantum Electron.16(2), 120–121 (1980). [CrossRef]
  37. W. Gadomski and B. Ratajska-Gadomska, “Self-pulsations in phonon-assisted lasers,” J. Opt. Soc. Am. B15(11), 2681–2688 (1998). [CrossRef]
  38. S. T. Lai and M. L. Shand, “High-Efficiency Cw Laser-Pumped Tunable Alexandrite Laser,” J. Appl. Phys.54(10), 5642–5644 (1983). [CrossRef]
  39. M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun.191(3-6), 305–314 (2001). [CrossRef]
  40. N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+: LiSAF laser,” J. Opt. Soc. Am. B21, 531–538 (2004). [CrossRef]
  41. N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. At-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun.260(2), 703–707 (2006). [CrossRef]
  42. H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B81(5), 637–644 (2005). [CrossRef]
  43. W. Gadomski and B. Ratajska-Gadomska, “Homoclinic orbits and chaos in the vibronic short-cavity standing-wave alexandrite laser,” J. Opt. Soc. Am. B17(2), 188–197 (2000). [CrossRef]
  44. W. Gadomski, B. Ratajska-Gadomska, and R. Meucci, “Homoclinic dynamics of the vibronic laser,” Chaos Solitons Fractals17(2-3), 387–396 (2003). [CrossRef]
  45. J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-µm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron.11(11), 874–881 (1975). [CrossRef]
  46. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966). [CrossRef]
  47. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988). [CrossRef]
  48. M. L. Shand and J. C. Walling, “Excited-state absorption in the lasing wavelength region of Alexandrite,” IEEE J. Quantum Electron.18(7), 1152–1155 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited