OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 790–797

Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique

Gabriela Salamu, Florin Jipa, Marian Zamfirescu, and Nicolaie Pavel  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 4, pp. 790-797 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2406 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Circular cladding waveguides were realized in a 5.0-mm long, 1.1-at.% Nd:YAG ceramic by direct femtosecond-laser writing using a scheme in which the laser medium is moved on a helical trajectory along its axis and parallel to the writing direction. Laser emission was obtained under the pump with a fiber-coupled diode laser. A 100-μm diameter waveguide delivered laser pulses at 1.06 μm with 3.4-mJ energy for the pump with pulses of 13.1-mJ energy, at 0.30 slope efficiency; laser pulses at 1.3 μm with 1.2-mJ energy were obtained from the same device. Comparison with a waveguide of the same dimension that was inscribed by the classical translation method of the laser medium is made. Efficient integrated lasers based on cladding waveguides that are pumped by fiber-coupled diode lasers could be realized by this writing method.

© 2014 Optical Society of America

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3580) Lasers and laser optics : Lasers, solid-state
(230.7380) Optical devices : Waveguides, channeled
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Laser Materials

Original Manuscript: January 31, 2014
Revised Manuscript: March 12, 2014
Manuscript Accepted: March 14, 2014
Published: March 24, 2014

Gabriela Salamu, Florin Jipa, Marian Zamfirescu, and Nicolaie Pavel, "Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique," Opt. Mater. Express 4, 790-797 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys A, Mater. Sci. Process.77(1), 109–111 (2003). [CrossRef]
  3. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  4. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009). [CrossRef]
  5. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008). [CrossRef]
  6. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010). [CrossRef]
  7. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express17(25), 22417–22422 (2009). [CrossRef] [PubMed]
  8. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010). [CrossRef] [PubMed]
  9. T. Calmano, J. Siebenmorgen, A.-G. Paschke, C. Fiebig, K. Paschke, G. Erbert, K. Petermann, and G. Huber, “Diode pumped high power operation of a femtosecond laser inscribed Yb:YAG waveguide laser,” Opt. Mater. Express1(3), 428–433 (2011). [CrossRef]
  10. T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express21(21), 25501–25508 (2013). [CrossRef] [PubMed]
  11. Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010). [CrossRef]
  12. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010). [CrossRef] [PubMed]
  13. T. Calmano, J. Siebenmorgen, F. Reichert, M. Fechner, A.-G. Paschke, N.-O. Hansen, K. Petermann, and G. Huber, “Crystalline Pr:SrAl12O19 waveguide laser in the visible spectral region,” Opt. Lett.36(23), 4620–4622 (2011). [CrossRef] [PubMed]
  14. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30(17), 2248–2250 (2005). [CrossRef] [PubMed]
  15. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012). [CrossRef] [PubMed]
  16. H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express20(17), 18620–18629 (2012). [CrossRef] [PubMed]
  17. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012). [CrossRef] [PubMed]
  18. Q. An, Y. Ren, Y. Jia, J. R. V. de Aldana, and F. Chen, “Mid-infrared waveguides in zinc sulfide crystal,” Opt. Mater. Express3(4), 466–471 (2013). [CrossRef]
  19. S. Müller, T. Calmano, P. Metz, N.-O. Hansen, C. Kränkel, and G. Huber, “Femtosecond-laser-written diode-pumped Pr:LiYF4 waveguide laser,” Opt. Lett.37(24), 5223–5225 (2012). [CrossRef] [PubMed]
  20. H. Liu, F. Chen, J. R. Vázquez de Aldana, and D. Jaque, “Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers,” Opt. Lett.38(17), 3294–3297 (2013). [CrossRef] [PubMed]
  21. N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett.10(9), 095802 (2013). [CrossRef]
  22. G. Salamu, F. Voicu, N. Pavel, T. Dascalu, F. Jipa, and M. Zamfirescu, “Laser emission in diode-pumped Nd:YAG single-crystal waveguides realized by direct femtosecond-laser writing technique,” Rom. Reports in Physics65(3), 943–953 (2013).
  23. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express22(5), 5177–5182 (2014). [CrossRef]
  24. O. Caulier, D. Le Coq, E. Bychkov, and P. Masselin, “Direct laser writing of buried waveguide in As2S3 glass using a helical sample translation,” Opt. Lett.38(20), 4212–4215 (2013). [CrossRef] [PubMed]
  25. N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B82(4), 599–605 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited