OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 5 — May. 1, 2014
  • pp: 1003–1010

Manipulating wave polarization by twisted plasmonic metamaterials

Xingchen Liu, Yiqun Xu, Zheng Zhu, Shengwu Yu, Chunying Guan, and Jinhui Shi  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 5, pp. 1003-1010 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1685 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple bilayered chiral metamaterial is constructed by using an array of two twisted split ring resonators (SRRs). Theoretical analysis and simulated results show that chiral metamaterial can achieve strong optical activity of linearly polarized electromagnetic (EM) waves. The arbitrary polarization rotation angle can be readily realized by properly designing the twisted angle. Changing the length of the horizontal bar can tune the spectral response of the SRRs. The induced current densities and magnetic field distributions provide a good explanation to optical activity in the bilayered SRR metamaterial.

© 2014 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: March 13, 2014
Revised Manuscript: April 12, 2014
Manuscript Accepted: April 14, 2014
Published: April 21, 2014

Xingchen Liu, Yiqun Xu, Zheng Zhu, Shengwu Yu, Chunying Guan, and Jinhui Shi, "Manipulating wave polarization by twisted plasmonic metamaterials," Opt. Mater. Express 4, 1003-1010 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. F. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt.15(2), 023001 (2013). [CrossRef]
  2. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013). [CrossRef] [PubMed]
  3. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009). [CrossRef]
  4. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009). [CrossRef] [PubMed]
  5. R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011). [CrossRef]
  6. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006). [CrossRef] [PubMed]
  7. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007). [CrossRef]
  8. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007). [CrossRef] [PubMed]
  9. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express16(16), 11802–11807 (2008). [CrossRef] [PubMed]
  10. S. V. Zhukovsky, A. V. Novitsky, and V. M. Galynsky, “Elliptical dichroism: operating principle of planar chiral metamaterials,” Opt. Lett.34(13), 1988–1990 (2009). [CrossRef] [PubMed]
  11. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93(19), 191911 (2008). [CrossRef]
  12. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34(16), 2501–2503 (2009). [CrossRef] [PubMed]
  13. Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011). [CrossRef]
  14. E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009). [CrossRef] [PubMed]
  15. R. Singh, E. Plum, W. L. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010). [CrossRef] [PubMed]
  16. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010). [CrossRef] [PubMed]
  17. M. X. Ren, E. Plum, J. J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012). [CrossRef] [PubMed]
  18. G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express2(12), 1702–1712 (2012). [CrossRef]
  19. R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009). [CrossRef] [PubMed]
  20. R. Zhao, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Comparison of chiral metamaterial designs for repulsive Casimir force,” Phys. Rev. B81(23), 235126 (2010). [CrossRef]
  21. Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010). [CrossRef]
  22. M. Mutlu and E. Ozbay, “A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012). [CrossRef]
  23. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008). [CrossRef]
  24. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  25. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012). [CrossRef] [PubMed]
  26. H. X. Xu, G. M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, “Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial,” Opt. Express21(21), 24912–24921 (2013). [CrossRef] [PubMed]
  27. H. X. Xu, G. M. Wang, M. Q. Qi, and T. Cai, “Dual-band circular polarizer and asymmetric spectrum filter using ultrathin compact chiral metamaterial,” Prog. Electromagnetics Res.143, 243–261 (2013). [CrossRef]
  28. N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011). [CrossRef]
  29. J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012). [CrossRef]
  30. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006). [CrossRef] [PubMed]
  31. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009). [CrossRef]
  32. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011). [CrossRef]
  33. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010). [CrossRef] [PubMed]
  34. C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012). [CrossRef]
  35. J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011). [CrossRef]
  36. M. Kang, J. Chen, H. X. Cui, Y. Li, and H. T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express19(9), 8347–8356 (2011). [CrossRef] [PubMed]
  37. J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012). [CrossRef]
  38. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012). [CrossRef] [PubMed]
  39. J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013). [CrossRef]
  40. S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun.3, 942 (2012). [CrossRef] [PubMed]
  41. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010). [CrossRef]
  42. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited