OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 5 — May. 1, 2014
  • pp: 1011–1022

Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses

Ting Wang, Xin Gai, Wenhou Wei, Rongping Wang, Zhiyong Yang, Xiang Shen, Steve Madden, and Barry Luther-Davies  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 5, pp. 1011-1022 (2014)
http://dx.doi.org/10.1364/OME.4.001011


View Full Text Article

Enhanced HTML    Acrobat PDF (1734 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report measurements of the third order optical nonlinearity of 51 chalcogenide glasses in the near infrared. Substituting more polarizable elements (Se for S, Sb for As) into the glasses increased their nonlinearity but also reduced the optical bandgap increasing two-photon absorption. Overall the measured values are an extremely good fit to the semi-empirical Miller’s rule whilst the normalized real and imaginary parts are in satisfactory agreement with the scaling for indirect gap semiconductors reported by Dinu. At 1550nm we find that there is an upper limit to the nonlinearity of ≈10−13cm2/W above which two-photon absorption becomes significant.

© 2014 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optical Materials

History
Original Manuscript: March 21, 2014
Revised Manuscript: April 5, 2014
Manuscript Accepted: April 9, 2014
Published: April 22, 2014

Virtual Issues
June 11, 2014 Spotlight on Optics

Citation
Ting Wang, Xin Gai, Wenhou Wei, Rongping Wang, Zhiyong Yang, Xiang Shen, Steve Madden, and Barry Luther-Davies, "Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses," Opt. Mater. Express 4, 1011-1022 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-5-1011


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998). [CrossRef]
  2. J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931–6933 (2004). [CrossRef]
  3. C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids62(8), 1435–1440 (2001). [CrossRef]
  4. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002). [CrossRef] [PubMed]
  5. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express16(4), 2804–2815 (2008). [CrossRef] [PubMed]
  6. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photonic Tech. L.14(6), 822–824 (2002). [CrossRef]
  7. L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009). [CrossRef]
  8. X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photonics Rev.7(6), 1054–1064 (2013). [CrossRef]
  9. C. C. Yang, A. Villeneuve, G. I. Stegeman, C. H. Lin, and H. H. Lin, “Anisotropic two-photon transitions in gaas/algaas multiple-quantum-well wave-guides,” IEEE J. Quantum Electron.29(12), 2934–2939 (1993). [CrossRef]
  10. J. S. Aitchison, M. K. Oliver, E. Kapon, E. Colas, and P. W. E. Smith, “Role of two-photon absorption in ultrafast semiconductor optical switching devices,” Appl. Phys. Lett.56(14), 1305–1307 (1990). [CrossRef]
  11. M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass-fiber,” IEEE Photonic Tech. L.4(4), 362–365 (1992). [CrossRef]
  12. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express15(22), 14414–14421 (2007). [CrossRef] [PubMed]
  13. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics3(3), 139–143 (2009). [CrossRef]
  14. M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As(2)S(3) glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express18(25), 26686–26694 (2010). [CrossRef] [PubMed]
  15. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express18(16), 17252–17261 (2010). [CrossRef] [PubMed]
  16. X. Gai, D. Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As2S3 chalcogenide glass waveguides,” J. Opt. Soc. Am. B28(11), 2777–2784 (2011). [CrossRef]
  17. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express16(25), 20374–20381 (2008). [CrossRef] [PubMed]
  18. X. Q. Su, R. P. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of Ge (x) As (y) Se1-x-y chalcogenide glasses,” Appl. Phys. A Mater.113(3), 575–581 (2013). [CrossRef]
  19. G. Yang, H. S. Jain, A. T. Ganjoo, D. H. Zhao, Y. S. Xu, H. D. Zeng, and G. R. Chen, “A photo-stable chalcogenide glass,” Opt. Express16(14), 10565–10571 (2008). [CrossRef] [PubMed]
  20. D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys. A Mater.96(3), 615–625 (2009). [CrossRef]
  21. W. H. Wei, R. P. Wang, X. Shen, L. Fang, and B. Luther-Davies, “Correlation between Structural and Physical Properties in Ge-Sb-Se Glasses,” J. Phys. Chem. C117(32), 16571–16576 (2013). [CrossRef]
  22. R. P. Wang, A. Smith, B. Luther-Davies, H. Kokkonen, and I. Jackson, “Observation of two elastic thresholds in GexAsySe1-x-y glasses,” J. Appl. Phys.105, 056109 (2009).
  23. P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X. H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express18(22), 22944–22957 (2010). [CrossRef] [PubMed]
  24. M. Sheik Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  25. J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci.1(3), 296–308 (2010). [CrossRef]
  26. H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett.42(10), 571–572 (2006). [CrossRef]
  27. X. Gai, B. Luther-Davies, and T. P. White, “Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000),” Opt. Express20(14), 15503–15515 (2012). [CrossRef] [PubMed]
  28. T. Wang, O. Gulbiten, R. P. Wang, Z. Y. Yang, A. Smith, B. Luther-Davies, and P. Lucas, “Relative contribution of stoichiometry and mean coordination to the fragility of Ge-As-Se glass forming liquids,” J. Phys. Chem. B118(5), 1436–1442 (2014). [CrossRef] [PubMed]
  29. M. A. Popescu, Non-Crystalline Chalcogenide (Kluwer Academic, 2001).
  30. W. Boyd, Nonlinear Optics (Academic Press Inc., 2003).
  31. C. C. Wang, “Empirical relation between the linear and the third-order nonlinear optical susceptibilities,” Phys. Rev. B2(6), 2045–2048 (1970). [CrossRef]
  32. H. Ticha and L. Tichy, “Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides,” J. Optoelectron. Adv. Mater.4, 381–386 (2002).
  33. V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express15(15), 9205–9221 (2007). [CrossRef] [PubMed]
  34. M. Sheik-Bahae, D. J. Hagan, and E. W. Vanstryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett.65(1), 96–99 (1990). [CrossRef] [PubMed]
  35. M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron.39(11), 1498–1503 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited