OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 5 — May. 1, 2014
  • pp: 1023–1029

Radiative efficiency of inelastic exciton-exciton scattering in ZnO nanocrystalline films

Chin-Hau Chia and Ming-Hsiu Yen  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 5, pp. 1023-1029 (2014)
http://dx.doi.org/10.1364/OME.4.001023


View Full Text Article

Enhanced HTML    Acrobat PDF (860 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By using high-excitation photoluminescence spectroscopy, we explored the emissions due to inelastic exciton-exciton scattering in ZnO nanocrystalline films at low temperature. It was found that the threshold excitation intensity for occurrence of inelastic exciton-exciton scattering dramatically increases as the crystalline size increases. The radiative efficiency of the inelastic exciton-exciton scattering also decreases rapidly as the crystalline size increases from 120 nm to 170 nm and eventually, no emission due to inelastic exciton-exciton scattering can be detected for crystalline size of 220 nm even at low-temperature. We believe that the spatial confinement effect is the most determinative factor influencing the efficiency of inelastic exciton-exciton scattering.

© 2014 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Semiconductors

History
Original Manuscript: March 7, 2014
Revised Manuscript: April 16, 2014
Manuscript Accepted: April 17, 2014
Published: April 23, 2014

Citation
Chin-Hau Chia and Ming-Hsiu Yen, "Radiative efficiency of inelastic exciton-exciton scattering in ZnO nanocrystalline films," Opt. Mater. Express 4, 1023-1029 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-5-1023


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, A. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005). [CrossRef]
  2. C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing,” Phys. Rev. B75(11), 115203 (2007). [CrossRef]
  3. C. H. Chia, T. Y. J. Lai, W. L. Hsu, T. C. Han, J. W. Chiou, Y. M. Hu, Y. C. Lin, W. C. Fan, and W. C. Chou, “High-excitation effect on photoluminescence of sol-gel ZnO nanopowder,” Appl. Phys. Lett.96(8), 081903 (2010). [CrossRef]
  4. Ü. Özgür, A. Teke, C. Liu, S.-J. Cho, H. Morkoc, and H. O. Everitt, “Stimulated emission and time-resolved photoluminescence in rf-sputtered ZnO thin films,” Appl. Phys. Lett.84(17), 3223–3225 (2004). [CrossRef]
  5. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystalline thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997). [CrossRef]
  6. Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth287(1), 169–179 (2006). [CrossRef]
  7. X. H. Zhang, S. J. Chua, A. M. Yong, H. D. Li, S. F. Yu, and S. P. Lau, “Exciton-related stimulated emission in ZnO polycrystalline thin film deposited by filtered cathodic vacuum arc technique,” Appl. Phys. Lett.88(19), 191112 (2006). [CrossRef]
  8. G. Tobin, E. McGlynn, M. O. Henry, J.-P. Mosnier, E. de Posada, and J. G. Lunney, “Effects of excitonic diffusion on stimulated emission in nanocrystalline ZnO,” Appl. Phys. Lett.88(7), 071919 (2006). [CrossRef]
  9. H. C. Hsu, C.-Y. Wu, and W.-F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005). [CrossRef]
  10. L. K. Teh, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett.91(16), 161116 (2007). [CrossRef]
  11. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  12. M. A. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature Laser Emission of ZnO Nanowires Explained by Many-Body Theory,” Phys. Rev. Lett.108(15), 157402 (2012). [CrossRef] [PubMed]
  13. T. Nakamura, K. Firdaus, and S. Adachi, “Electron-hole plasma lasing in a ZnO random laser,” Phys. Rev. B86(20), 205103 (2012). [CrossRef]
  14. T. Shih, E. Mazur, J.-P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys.109(4), 043504 (2011). [CrossRef]
  15. A.-S. Gadallah, K. Nomenyo, C. Couteau, D. J. Rogers, and G. Lérondel, “Stimulated emission from ZnO thin films with high optical gain and low loss,” Appl. Phys. Lett.102(17), 171105 (2013). [CrossRef]
  16. A. Yamamoto, K. Miyajima, T. Goto, H. J. Ko, and T. Yao, “Biexciton luminescence in high-quality ZnO epitaxial thin films,” Appl. Phys. Lett.90(10), 4973–4976 (2001).
  17. H. J. Ko, Y. F. Chen, T. Yao, K. Miyajima, A. Yamamoto, and T. Goto, “Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett.77(4), 537–539 (2000). [CrossRef]
  18. C. H. Chia, W. C. Tsai, and W. C. Chou, “Pre-heating temperature effect on structural and photoluminescent properties of sol-gel derived ZnO thin films,” J. Lumin.148(4), 111–115 (2014). [CrossRef]
  19. M. Kubota, T. Onuma, A. Tsukasaki, A. Ohtomo, M. Kawasaki, T. Sota, and S. F. Chichibu, “Recombination dynamics of exciton in Mg0.11Zn0.89O alloy films grown using the high-temperature-annealed self-buffer layer by laser-assisted molecular-beam epitaxy,” Appl. Phys. Lett.90(14), 141903 (2007). [CrossRef]
  20. J.-S. Hwang, F. Donatini, J. Pernot, R. Thierry, P. Ferret, and S. Dang, “Carrier depletion and exciton diffusion in a single ZnO nanowire,” Nanotechnology22(47), 475704 (2011). [CrossRef] [PubMed]
  21. M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, A. Polyakov, J. Christen, M. Brandt, M. Lorenz, and M. Grundmann, “Excitonic transport in ZnO,” J. Mater. Res.27(17), 2225–2231 (2012). [CrossRef]
  22. M. A. M. Versteegh, A. J. van Lange, H. T. C. Stoof, and J. I. Dijkhuis, “Observation of preformed electron-hole Cooper pairs in highly excited ZnO,” Phys. Rev. B85(19), 195206 (2012). [CrossRef]
  23. K. Suzuki, M. Inoguchi, K. Fujita, S. Murai, K. Tanaka, N. Tanaka, A. Ando, and H. Takagi, “High-density excitation effect on photoluminescence in ZnO nanoparitcles,” J. Appl. Phys.107(12), 124311 (2010). [CrossRef]
  24. S. Mani, J. I. Jang, and J. B. Ketterson, “Highly efficient nonresonant two-photon absorption in ZnO pellets,” Appl. Phys. Lett.93(4), 041902 (2008). [CrossRef]
  25. T. C. He, R. Chen, W. W. Lin, F. Huang, and H. D. Sun, “Two-photon-pumped stimulated emission from ZnO single crystal,” Appl. Phys. Lett.99(8), 081902 (2011). [CrossRef]
  26. T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov, and T. Yao, “Correlation between grain size and optical properties in zinc oxide thin films,” Appl. Phys. Lett.81(7), 1231–1233 (2002). [CrossRef]
  27. A. Nakamura, H. Yamada, and T. Tokizaki, “Size-dependent radiative decay of excitons in CuCl semiconducting quantum spheres embedded in glasses,” Phys. Rev. B Condens. Matter40(12), 8585–8588 (1989). [CrossRef] [PubMed]
  28. Y. Kayanuma, “Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape,” Phys. Rev. B Condens. Matter38(14), 9797–9805 (1988). [CrossRef] [PubMed]
  29. T. Takagahara, “Nonlocal theory of the size and temperature dependence of the radiative decay rate of excitons in semiconductor quantum dots,” Phys. Rev. B Condens. Matter47(24), 16639–16642 (1993). [CrossRef] [PubMed]
  30. B. Gil and A. V. Kavokin, “Giant exciton-light coupling in ZnO quantum dots,” Appl. Phys. Lett.81(4), 748–750 (2002). [CrossRef]
  31. V. A. Fonoberov and A. A. Balandin, “Comment on “Giant exciton-light coupling in ZnO quantum dots” [Appl. Phys. Lett. 81, 748 (2002)],” Appl. Phys. Lett.86(22), 226101 (2005). [CrossRef]
  32. G. Xiong, J. Wilkinson, K. B. Ucer, and R. T. Williams, “Giant oscillator strength of excitons in bulk and nanostructured systems,” J. Lumin.112(1-4), 1–6 (2005). [CrossRef]
  33. S. Hong, T. Joo, W. I. Park, Y. H. Jun, and G.-C. Yi, “Time-resolved photoluminescence of the size-controlled ZnO nanorods,” Appl. Phys. Lett.83(20), 4157 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited