OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 5 — May. 1, 2014
  • pp: 1030–1041

Bandgap energy bowing parameter of strained and relaxed InGaN layers

G. Orsal, Y. El Gmili, N. Fressengeas, J. Streque, R. Djerboub, T. Moudakir, S. Sundaram, A. Ougazzaden, and J.P. Salvestrini  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 5, pp. 1030-1041 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3663 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper focuses on the determination of the bandgap energy bowing parameter of strained and relaxed InxGa1−xN layers. Samples are grown by metal organic vapor phase epitaxy on GaN template substrate for indium compositions in the range of 0<x<0.25. The bangap emission energy is characterized by cathodoluminescence and the indium composition as well as the strain state are deduced from high resolution X-ray diffraction measurements. The experimental variation of the bangap emission energy with indium content can be described by the standard quadratic equation, fitted using a relative least square method and qualified with a chi square test. Our approach leads to values of the bandgap energy bowing parameter equal to 2.87±0.20eV and 1.32±0.28eV for relaxed and strained layers (determined for the first time since the revision of the InN bandgap energy in 2002), respectively. The corresponding modified Vegard’s laws describe accurately the indium content dependence of the bandgap emission energy in InGaN alloy and for the whole range of indium content. Finally, as an example of application, 3D mapping of indium content in a thick InGaN layer is deduced from bandgap energy measurements using cathodoluminescence and a corresponding hyperspectral map.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(310.6860) Thin films : Thin films, optical properties

ToC Category:

Original Manuscript: February 18, 2014
Revised Manuscript: April 4, 2014
Manuscript Accepted: April 5, 2014
Published: April 29, 2014

G. Orsal, Y. El Gmili, N. Fressengeas, J. Streque, R. Djerboub, T. Moudakir, S. Sundaram, A. Ougazzaden, and J.P. Salvestrini, "Bandgap energy bowing parameter of strained and relaxed InGaN layers," Opt. Mater. Express 4, 1030-1041 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110, 113110(2011). [CrossRef]
  2. P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).
  3. J. Zhang and N. Tansu, “Optical Gain and Laser Characteristics of InGaN Quantum Wells on Ternary InGaN Substrates,” IEEE Photon. J.5,2600111 (2013). [CrossRef]
  4. C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV bandgap,” Appl. Phys. Lett.93, 143502 (2008). [CrossRef]
  5. E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011). [CrossRef]
  6. J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).
  7. X. Cai, S. Zeng, and B. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95, 173504 (2009). [CrossRef]
  8. M. R. Islam, M. R. Kaysir, M. J. Islam, A. Hashimoto, and A. Yamamoto, “MOVPE Growth of Inx Ga1−xN (x ≈ 0.4) and Fabrication of Homo-junction Solar Cells,” J. Mater. Sci. Technol., 29(2), 128–136 (2013). [CrossRef]
  9. M. Moret, B. Gil, S. Ruffenach, O. Briot, Ch. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys,” J. Cryst. Growth311, 2795–2797 (2009). [CrossRef]
  10. M. Kurouchi, T. Araki, H. Naoi, T. Yamaguchi, A. Suzuki, and Y. Nanish, “Growth and properties of In-rich InGaN films grown on (0001) sapphire by RF-MBE,” Phys. Stat. Sol. (B), 241, 2843–2848 (2004). [CrossRef]
  11. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small bandgap bowing in In1−x GaxN alloys,” Appl. Phys. Lett., 80, 4741–4743 (2002). [CrossRef]
  12. C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, and N. A. El- Masry, “Determination of the critical layer thickness in the InGaN/GaN Heterostructures,” Appl. Phys. Lett., 75(18), 2776–2778 (1999). [CrossRef]
  13. P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Stat. Sol. B240, 273–284 (2003). [CrossRef]
  14. W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, “Optical properties of Inx Ga1−xN alloys grown by metalorganic chemical vapor deposition,” J. Appl. Phys., 84, 4452–4458 (1998). [CrossRef]
  15. Z. C. Feng, W. Liu, S. J. Chua, J. W. Yu, C. C. Yang, T. R. Yang, and J. Zhao, “Photoluminescence characteristics of low indium composition InGaN thin films grown on sapphire by metalorganic chemical vapor deposition,” Thin Sol. Films498, 118–122 (2006). [CrossRef]
  16. F. B. Naranjo, S. Fernanchez-Garcia, F. Calle, E. Calleja, A. Trampert, and KH Ploog, “Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy,” Mater. Sci. Eng. B, 93, 131–134 (2002). [CrossRef]
  17. J-P. Nougier, Méthode des calculs numériques. Volume 2, Fonctions équations aux dérivées (Hermes Science Publications, 2001).
  18. S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007). [CrossRef]
  19. M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys., 72, 036502(2009). [CrossRef]
  20. M. Schuster, P. O. Gervais, B. Jobst, W. H. Osler, R. Averbeck, H. Riechert, A. Iberlk, and R. Stmmerk, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys.32, A56–A60 (1999). [CrossRef]
  21. Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, “Characteristics of the surface microstructures in thick InGaN layers on GaN,” Opt. Mat. Exp.3(8), 1111–1118 (2013). [CrossRef]
  22. Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J. P. Salvestrini, and A. Ougazzaden, “Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study,” Act. Mat.61(17), 6587–6596 (2013). [CrossRef]
  23. A. Fischer, H. Kuhne, and H. Richter, “New Approach in Equilibrium Theory for Strained Layer Relaxation,” Phys. Rev. Lett., 73, 2712–2715 (1994). [CrossRef] [PubMed]
  24. M. Leyer, J. Stellmach, Ch. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0001) GaN,” J. Cryst. Growth, 310, 4913–4915 (2008). [CrossRef]
  25. S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002). [CrossRef]
  26. M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003). [CrossRef]
  27. M. R. Correia, S. Pereira, E. Pereira, R. A. Sa Ferreira, J. Frandonc, E. Alvesd, I. M. Watsonf, C. Liuf, A. Morelg, and B. Gilg, “Optical studies on the red luminescence of InGaN epilayers,” Superlattices and Microstructures36, 625–632 (2004). [CrossRef]
  28. S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in Inx Ga1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B64(20), 205311 (2001). [CrossRef]
  29. K Pantzas, G Patriarche, D Troadec, S Gautier, T Moudakir, S Suresh, L Largeau, O Mauguin, P L Voss, and A Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012). [CrossRef] [PubMed]
  30. K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Stat. Sol. A209, 25–28 (2012). [CrossRef]
  31. F. K. Yam and Z. Hassan, “InGaN: An overview of the growth kinetics, physical properties and emission mechanisms,” Superlattices and Microstructures43, 1–23 (2008). [CrossRef]
  32. W. Walukiewicz, “Narrow bandgap group III-nitride alloys,” Physica E20, 300–307 (2004). [CrossRef]
  33. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett.81, 1246–1248 (2002). [CrossRef]
  34. Q. Yan, P. Rinke, M. Scheffler, and C. G. Van, “Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN,” Appl. Phys. Lett95, 121111 (2009). [CrossRef]
  35. H. Y. Peng, M. M. McCluskey, Y. M. Gupta, M. Kneissl, and N. M. Johnson, “Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials,” Phys. Rev. B71, 115207 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited