OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 5 — May. 1, 2014
  • pp: 1042–1049

Fabrication of composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser

Lin Ge, Jiang Li, Zhiwei Zhou, Haiyun Qu, Manjiang Dong, Yan Zhu, Tengfei Xie, Wei Li, Min Chen, Huamin Kou, Yun Shi, Yubai Pan, Xiqi Feng, and Jingkun Guo  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 5, pp. 1042-1049 (2014)
http://dx.doi.org/10.1364/OME.4.001042


View Full Text Article

Enhanced HTML    Acrobat PDF (1960 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser were fabricated by non-aqueous tape casting and solid-state reactive sintering. The slurry made from the oxide powder mixtures shows a shear thinning behavior. The morphologies of the tapes were homogeneous in structure, and the tapes had appropriate strength and toughness. After calcining at 600°C for 10h in air, the samples contained less than 0.05wt.% of carbon. No gaps were found between the layers on the fracture surface of the green body compacted by cold isostatic pressing. The composite YAG/Nd:YAG/YAG transparent ceramics with in-line transmittance of 82.5% at 1064nm were obtained by vacuum-sintering at 1760°C for 30h, whose average grain size is 36.8μm. The diffusion distance of the Nd3+ ions was about 150μm along the thickness direction of the ceramics.

© 2014 Optical Society of America

OCIS Codes
(160.3380) Materials : Laser materials
(160.5690) Materials : Rare-earth-doped materials
(220.2740) Optical design and fabrication : Geometric optical design

ToC Category:
Laser Materials

History
Original Manuscript: April 4, 2014
Revised Manuscript: April 26, 2014
Manuscript Accepted: April 26, 2014
Published: April 30, 2014

Citation
Lin Ge, Jiang Li, Zhiwei Zhou, Haiyun Qu, Manjiang Dong, Yan Zhu, Tengfei Xie, Wei Li, Min Chen, Huamin Kou, Yun Shi, Yubai Pan, Xiqi Feng, and Jingkun Guo, "Fabrication of composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser," Opt. Mater. Express 4, 1042-1049 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-5-1042


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008). [CrossRef]
  2. T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics,” Opt. Mater. Express1(5), 1040–1050 (2011). [CrossRef]
  3. J. R. Lu, M. Prabhu, J. Q. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett.77(23), 3707–3709 (2000). [CrossRef]
  4. G. Boulon, “Fifty years of advances in solid-state laser materials,” Opt. Mater.34(3), 499–512 (2012). [CrossRef]
  5. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser and Photon. Rev.1(2), 93–177 (2007). [CrossRef]
  6. J. Li, Y. B. Pan, Y. P. Zeng, W. B. Liu, B. X. Jiang, and J. K. Guo, “The history, development, and future prospects for laser ceramics: A review,” Int. J. Refract. Met. Hard Mater.39, 44–52 (2013). [CrossRef]
  7. V. A. Konyushkin, A. N. Nakladov, D. V. Konyushkin, M. E. Doroshenko, V. V. Osiko, and A. Ya, “Karasik Ceramic planar waveguide structures for amplifiers and lasers,” IEEE. J. Quantum. Elect.43(1), 60–62 (2013).
  8. C. Grivas, “Optically pumped planar waveguide lasers, Part I:Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  9. H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguides laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett.5(12), 879–881 (2008). [CrossRef]
  10. S. P. Ng and J. I. Mackenzie, “Power and Radiance Scaling of a 946 nm Nd:YAG Planar Waveguides Laser,” Laser Phys.22(3), 494–498 (2012). [CrossRef]
  11. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006). [CrossRef]
  12. J. R. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001). [CrossRef]
  13. A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express17(25), 23344–23349 (2009). [CrossRef] [PubMed]
  14. Y. Wang, D. Y. Shen, H. Chen, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “Highly efficient Tm:YAG ceramic laser resonantly pumped at 1617 nm,” Opt. Lett.36(23), 4485–4487 (2011). [CrossRef] [PubMed]
  15. H. Chen, D. Y. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao, and X. F. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett.36(9), 1575–1577 (2011). [CrossRef] [PubMed]
  16. L. Esposito, A. L. Costa, and V. Medri, “Reactive sintering of YAG-based materials using micrometer-sized powders,” J. Eur. Ceram. Soc.28(5), 1065–1071 (2008). [CrossRef]
  17. R. Boulesteix, A. Maître, J. F. Baumard, C. Sallé, and Y. Rabinovitch, “Mechanism of the liquid-phase sintering for Nd:YAG ceramics,” Opt. Mater.31(5), 711–715 (2009). [CrossRef]
  18. Y. K. Li, S. M. Zhou, H. Lin, X. R. Hou, W. J. Li, H. Teng, and T. T. Jia, “Fabrication of Nd:YAG transparent ceramics with TEOS, MgO and compound additives as sintering aids,” J. Alloy. Comp.502(1), 225–230 (2010). [CrossRef]
  19. W. Zhang, T. C. Lu, B. Y. Ma, N. Wei, Z. W. Lu, F. Li, Y. B. Guan, X. T. Chen, W. Liu, and L. Qi, “Improvement of optical properties of Nd:YAG transparent ceramics by post-annealing and post hot isostatic pressing,” Opt. Mater.35(12), 2405–2410 (2013). [CrossRef]
  20. Yu. L. Kopylov, V. B. Kravchenko, S. N. Bagayev, V. V. Shemet, A. A. Komarov, O. V. Karban, and A. A. Kaminskii, “Development of Nd3+:Y3Al5O12 laser ceramics by high-pressure colloidal slip-casting (HPCSC) method,” Opt. Mater.31(5), 707–710 (2009). [CrossRef]
  21. Y. H. Sang, H. M. Qin, H. Liu, L. L. Zhao, Y. N. Wang, H. D. Jiang, and J. Y. Wang, “Partial wet route for YAG powders synthesis leading to transparent ceramic: a core-shell solid-state reaction process,” J. Eur. Ceram. Soc.33(13–14), 2617–2623 (2013). [CrossRef]
  22. R. Boulesteix, A. Maître, L. Chrétien, Y. Rabinovitch, and C. Sallé, “Microstructural evolution during vacuum sintering of yttrium aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc.96(6), 1724–1731 (2013). [CrossRef]
  23. X. D. Li, J. G. Li, Z. M. Xiu, D. Huo, and X. D. Sun, “Transparent Nd:YAG ceramics fabricated using nanosized γ-alumina and yttria powders,” J. Am. Ceram. Soc.92(1), 241–244 (2009). [CrossRef]
  24. J. Sangheraa, W. Kima, G. Villalobosa, B. Shawa, C. Bakera, J. Frantza, B. Sadowskib, and I. Aggarwalb, “Ceramic laser materials: Past and present,” Opt. Mater.35(4), 693–699 (2013). [CrossRef]
  25. S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramic,” J. Am. Ceram. Soc.89(6), 1945–1950 (2006). [CrossRef]
  26. J. Dong, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett.32(13), 1890–1892 (2007). [CrossRef] [PubMed]
  27. T. Taira, “Ceramic YAG lasers,” C. R. Phys.8(2), 138–152 (2007). [CrossRef]
  28. T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 798–809 (2007). [CrossRef]
  29. E. R. Kupp, G. L. Messing, J. M. Anderson, V. Gopalan, J. Q. Dumm, C. Kraisinger, N. Ter-Gabrielyan, L. D. Merkle, M. Dubinskii, V. K. Simonaitis-Castillo, and G. J. Quarles, “Co-casting and optical characteristics of transparent segmented composite Er:YAG laser ceramics,” J. Mater. Res.25(03), 476–483 (2010). [CrossRef]
  30. N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, “Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm,” Opt. Lett.35(7), 922–924 (2010). [CrossRef] [PubMed]
  31. F. Tang, Y. G. Cao, J. Q. Huang, H. Liu, W. Guo, and W. C. Wang, “Fabrication and laser behavior of composite Yb:YAG ceramic,” J. Am. Ceram. Soc.95(1), 56–69 (2012). [CrossRef]
  32. F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, Q. H. Huang, and W. C. Wang, “Multilayer YAG/Re:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method,” J. Eur. Ceram. Soc.32(16), 3995–4002 (2012). [CrossRef]
  33. X. W. Ba, J. Li, Y. P. Zeng, Y. B. Pan, B. X. Jiang, W. B. Liu, L. Wang, J. Liu, and J. K. Guo, “Transparent Y3Al5O12 ceramics produced by an aqueous tape casting method,” Ceram. Int.39(4), 4639–4643 (2013). [CrossRef]
  34. X. W. Ba, J. Li, Y. B. Pan, Y. P. Zeng, H. M. Kou, W. B. Liu, J. Liu, and J. K. Guo, “Comparison of aqueous- and non-aqueous-based tape casting for preparing YAG transparent ceramics,” J. Alloy. Comp.577, 228–231 (2013). [CrossRef]
  35. R. E. Mistler, “Tape casting: Past, present, potential,” Am. Ceram. Soc. Bull.77(10), 82–86 (1998).
  36. R. E. Mistler and E. R. Twiname, Tape Casting: Theory and Practice (Publisher & American, 2000).
  37. H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007). [CrossRef]
  38. X. Yang, J. Xu, H. Li, Q. Bi, L. Su, Y. Cheng, and Q. Tang, “Thermoluminescence properties of carbon doped Y3Al5O12 (YAG) crystal,” J. Appl. Phys.106(3), 033105 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited