OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 5 — May. 1, 2014
  • pp: 1057–1066

Surface rheology of rubbed polyimide film in liquid crystal display

Yuichi Momoi, Osamu Sato, Tomonori Koda, Akihiro Nishioka, Osamu Haba, and Koichiro Yonetake  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 5, pp. 1057-1066 (2014)
http://dx.doi.org/10.1364/OME.4.001057


View Full Text Article

Enhanced HTML    Acrobat PDF (727 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The rheological properties of polyimide film surfaces have an important influence on contrast reduction during the in-plane switching mode of liquid crystal displays. To clarify these properties, the slight difference of deviation angles of liquid crystal directors from the rubbing direction were measured during prolonged exposure to alternating electric fields. The results indicate that the data can be well described using the Kelvin-Voigt model. The relation between the in-plane shear modulus G and the strain at the polyimide surface was also investigated based on the torque balance between the energy density of the electric field and the elastic energy density of the polyimide surface. It was found that much smaller G than bulk polyimide materials existed on the polyimide surface in liquid crystal display.

© 2014 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Liquid Crystals

History
Original Manuscript: February 28, 2014
Revised Manuscript: March 21, 2014
Manuscript Accepted: March 21, 2014
Published: May 1, 2014

Virtual Issues
Optical Materials for Flat Panel Displays (2013) Optical Materials Express

Citation
Yuichi Momoi, Osamu Sato, Tomonori Koda, Akihiro Nishioka, Osamu Haba, and Koichiro Yonetake, "Surface rheology of rubbed polyimide film in liquid crystal display," Opt. Mater. Express 4, 1057-1066 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-5-1057


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67, 3895–3897 (1995). [CrossRef]
  2. M. Oh-e, M. Ohta, S. Aratani, and K. Kondo, “Principles and characteristics of electro-optical behavior with in-plane switching mode,” The 15th IDRC (Asia Display ’95), 577–580 (1995).
  3. Z. Tajima, “IPS-TFT-LCDs technology trends,” Asia Display/IMID ’04 Dig., 15–17 (2004).
  4. S. L. Wright, “IBM 9.2-Megapixel flat-panel display: technology and infrastructure,” IBM Research Report, RC22363(W0203-023), March 8 (2002).
  5. T. Ueki, “Requirements for large-sized high-resolution TFT-LCDs,” J. Soc. Inf. Display, 9, 151–154 (2001). [CrossRef]
  6. Y. Nagae, “Recent trends in wide-viewing angle color TFT-LCDs,”, Proc. SPIE, 4079, 152–159 (2000). [CrossRef]
  7. M. Mizusaki, T. Miyashita, and T. Uchida, “Behavior of ion affecting image sticking on liquid crystal displays under application of direct current voltage,” J. Appl. Phys.108,104903 (2010). [CrossRef]
  8. M. Mizusaki, T. Miyashita, and T. Uchida, “Kinetic analysis of image sticking with adsorption and desorption of ions to a surface of an alignment layer,” J. Appl. Phys.112,044510 (2012). [CrossRef]
  9. M. Mizusaki, T. Miyashita, and T. Uchida, “The mechanism of image sticking on LCD and its evaluation parameters related to LC and alignment materials,” SID Symp. Dig. Tech. Pap.37, 673–676 (2006). [CrossRef]
  10. S. -C. Park, K. -H. Lim, S. -H. Choi, and H. -S. Soh, “Quantitative analysis of image Sticking in LCDs,” SID Symp. Dig. Tech. Pap.38, 1042–1045 (2007). [CrossRef]
  11. H. J. Park, L. Lai, S. H. Lin, and K. H. Yang, “Analysis of IPS mura, image-sticking and flicker caused by internal DC effects,” SID Symp. Dig. Tech. Pap.34, 204–207 (2003). [CrossRef]
  12. S. Naemura, “Liquid-crystal-material technologies for advanced display applications,” J. Soc. Inf. Display8, 5–9 (2000). [CrossRef]
  13. Y. Park, S. Kim, and E. Lee, “A study on reducing image-sticking artifacts in wide-screen TFT-LCD monitors,” J. Soc. Inf. Display, 15, 969–973 (2007). [CrossRef]
  14. V. P. Vorflusev, H.-S. Kitzerow, and V. G. Chigrinov, “Azimuthal surface gliding of a nematic liquid crystal,” Appl. Phys. Lett.70, 3359–3361 (1997). [CrossRef]
  15. R. Yamaguchi and S. Sato, “Tortional torque effects of twisted nematic bulk on the polymer surface alignment,” Mol. Cryst. and Liq. Cryst.367, 379–386 (2001). [CrossRef]
  16. E. A. Oliveira, A.M. Figueiredo Neto, and G. Durand, “Gliding anchoring of lyotropic nematic liquid crystals on amorphous glass surfaces,” Phys. Rev. A, 44, R825–R827 (1991). [CrossRef] [PubMed]
  17. Y. Ouchi, M. B. Feller, T. Moses, and Y. R. Shen, “Surface memory effect at the liquid-crystal-polymer interface,” Phys. Rev. Lett.68, 3040–3043 (1992). [CrossRef] [PubMed]
  18. P. Vetter, Y. Ohmura, and T. Uchida, “Study of memory alignment of nematic liquid crystals on polyvinyl alcohol coatings,” Jpn. J. App. Phys.32, L1239–L1241 (1993). [CrossRef]
  19. R. Barberi, I. Dozov, M. Giocondo, M. Iovane, Ph. Martinot-Lagarde, D. Stoenescu, S. Tonchev, and L. V. Tsonev, “Azimuthal anchoring of nematic on undulated substrate: elasticity versus memory,” Eur. Phys. J.B6,83–91 (1998). [CrossRef]
  20. S. Faetti, M. Nobili, and I. Raggi, “Surface reorientation dynamics of nematic liquid crystals,” Eur. Phys. J.B11,445–453 (1999). [CrossRef]
  21. I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, Ph. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett., 77, 4124–4126 (2000). [CrossRef]
  22. D. N. Stoenescu, I. Dozov, and Ph. Martinot-Lagarde, “Long-time behavior of the azimuthal anchoring strength and easy axis gliding of nematic liquid crystal,” Mol. Cryst. Liq. Cryst., 351, 427–434 (2000). [CrossRef]
  23. A. Romanenko, V. Reshetnyak, I. Pinkevich, I. Dozov, and S. Faetti, “Magnetic field induced director reorientation in the nematic cell with time-dependent anchoring due to adsorption/desorption of LC molecules,” Mol. Cryst. Liq. Crystl, 439, 1867–1888, (2005).
  24. Y. Momoi, K. Tamai, K. Furuta, T. -R. Lee, K. -J. Kim, C. -H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Display18, 134–140 (2010). [CrossRef]
  25. T. Suzuki, J. Matsushima, Y. Sakaki, M. Sugimoto, H. Tanaka, C. Mizoguchi, S. Onda, K. Mimura, and K. Sumiyoshi, “High contrast ratio in-plane-switching TFT-LCD with ion beam irradiated polyimide film as LC alignment layer,” IDW/ASIA DISPLAY Dig., 57–60 (2005).
  26. J. Stöhr, M.G. Samant, A. Cossy-Favre, J. Diaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic origin of liquid crystal alignment on rubbed polymer surfaces,” Macromolecules31, 1942–1946 (1998). [CrossRef]
  27. E. Gutierrez and A. Groisman, “Measurements of elastic moduli of silicone gel substrates with a microfluidic device”, PLoS ONE6,e25534 (2011). [CrossRef] [PubMed]
  28. M. Fukuhara and A. Sampei, “Temperature dependence of elastic moduli and internal dilational and shear frictions of polyimide,” J. Polym. Sci., Part B, Polym. Phys., 34, 1579–1582 (1996). [CrossRef]
  29. S. H. Cho, G. Kim, T. J. McCarthy, and R. J. Farris, “Orthotropic elastic constants for polyimide film,” Polym. Eng. Sci., 41, 301–307 (2001). [CrossRef]
  30. M. Kwak, D. Han, H. Kwon, S. Choi, Y. Choi, D. Koo, K. Kim, and B. Kim, “Studies of the directional property on rubbed alignment films by rubbing condition,” Mol. Cryst. Liq. Cryst.546, 1481–1486 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited