OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 5 — May. 1, 2014
  • pp: 1077–1087

Micro-spectroscopic characterization of ferroelectric domain structures in Yb3+:LiNbO3 prepared by electron beam writing

Luis Mateos, Luisa E. Bausá, and Mariola O Ramírez  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 5, pp. 1077-1087 (2014)
http://dx.doi.org/10.1364/OME.4.001077


View Full Text Article

Enhanced HTML    Acrobat PDF (3031 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sub-micrometer inverted domains in Yb3+ doped bulk LiNbO3 crystals are reported by using direct electron beam writing (DEBW) as a tool to reverse the spontaneous polarization in a two dimensional geometry. The effect of electron bombardment within the domain inversion process is analyzed at the micrometer scale by combining spatially resolved confocal Raman, Fluorescence and Second Harmonic Generation (SHG) imaging techniques. The obtained results not only confirms the feasibility of DEBW on the inversion procedure -the linear and nonlinear optical properties of the system remain unaltered after the process, but they also show that the slight structural changes associated with the polarization reversal in LiNbO3 are independent on the employed switching mechanism. The possibility of obtaining complementary non-destructive spectroscopic images of domains is also shown. Together, the results highlight the outstanding opportunities offered by confocal spectroscopy as a non invasive tool to probe the interaction between intrinsic defects and ferroelectric domain reversal structures in LiNbO3. Additionally, they provide valuable information to further decrease the size and distance between adjacent inverted domains in a solid state system in which, IR laser action, self-frequency conversion processes and laser tunability have been demonstrated.

© 2014 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(160.2260) Materials : Ferroelectrics
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(220.4000) Optical design and fabrication : Microstructure fabrication
(180.5655) Microscopy : Raman microscopy

ToC Category:
Nonlinear Optical Materials

History
Original Manuscript: March 12, 2014
Revised Manuscript: April 22, 2014
Manuscript Accepted: April 24, 2014
Published: May 1, 2014

Citation
Luis Mateos, Luisa E. Bausá, and Mariola O Ramírez, "Micro-spectroscopic characterization of ferroelectric domain structures in Yb3+:LiNbO3 prepared by electron beam writing," Opt. Mater. Express 4, 1077-1087 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-5-1077


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. M. Assouar, B. Vincent, and H. Moubchir, “Phononic crystals based on LiNbO3 realized using domain inversion by electron-beam irradiation,” IEEE T Ultrason. Ferr.55, 273–278 (2008).
  2. T. Ellenbogen, A. Ganany-Padowicz, and A. Arie, “Nonlinear photonic structures for all-optical deflection,” Opt. Express16(5), 3077–3082 (2008). [CrossRef] [PubMed]
  3. M. Krishnamurthi, M. O. Ramirez, S. Denev, V. Gopalan, T. M. Lehecka, J. G. Thomas, and Q. X. Jia, “Two dimensional dynamic focusing of laser light by ferroelectric domain based electro-optic lenses,” Appl. Phys. Lett.90(20), 201106 (2007). [CrossRef]
  4. H. X. Li, S. Y. Mu, P. Xu, M. L. Zhong, C. D. Chen, X. P. Hu, W. N. Cui, and S. N. Zhu, “Multicolor Cerenkov conical beams generation by cascaded- chi((2)) processes in radially poled nonlinear photonic crystals,” Appl. Phys. Lett.100(10), 101101 (2012). [CrossRef]
  5. M. O. Ramirez, P. Molina, and L. E. Bausa, “Multifunctional solid state lasers based on ferroelectric crystals,” Opt. Mater.34(3), 524–535 (2012). [CrossRef]
  6. P. Molina, M. O. Ramirez, J. V. Garcia-Santizo, S. Alvarez-Garcia, R. Pazik, W. Strek, P. J. Deren, and L. E. Bausa, “Micrometric spatial control of rare earth ion emission in LiNbO3: A two-dimensional multicolor array,” Appl. Phys. Lett.95(5), 051103 (2009). [CrossRef]
  7. J. V. García-Santizo, P. Molina, M. O. Ramírez, K. Lemanski, W. Strek, P. J. Dereń, and L. E. Bausá, “Rare earth doped ring-shaped luminescent micro-composites on patterned ferroelectrics,” Opt. Express18(17), 18269–18277 (2010). [CrossRef] [PubMed]
  8. E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous Emission and Nonlinear Response Enhancement by Silver Nanoparticles in a Nd³⁺-Doped Periodically Poled LiNbO₃ Laser Crystal,” Adv. Mater.25(6), 910–915 (2013). [CrossRef] [PubMed]
  9. P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective Plasmon Enhancement of the 1.08 μm Nd3+ Laser Stark Transition by Tailoring Ag Nanoparticles Chains on a PPLN Y-cut,” Nano Lett.13(10), 4931–4936 (2013). [CrossRef] [PubMed]
  10. E. Montoya, J. A. Sanz-Garcia, J. Capmany, L. E. Bausa, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys.87(9), 4056–4062 (2000). [CrossRef]
  11. J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+ doped aperiodically poled lithium niobate,” Appl. Phys. Lett.78(2), 144–146 (2001). [CrossRef]
  12. L. Mateos, L. E. Bausa, and M. O. Ramirez, “Two dimensional ferroelectric domain patterns in Yb3+optically active LiNbO3 fabricated by direct electron beam writing,” Appl. Phys. Lett.102(4), 042910 (2013). [CrossRef]
  13. L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express20(28), 29940–29948 (2012). [CrossRef] [PubMed]
  14. G. Stone, B. Knorr, V. Gopalan, and V. Dierolf, “Frequency shift of Raman modes due to an applied electric field and domain inversion in LiNbO3,” Phys. Rev. B84(13), 134303 (2011). [CrossRef]
  15. L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two-dimensional nonlinear Photonic Crystal with Strong χ(3) Response in the UV Spectral Region,” Adv. Funct. Mater.24(11), 1509–1518 (2014). [CrossRef]
  16. M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett.90(10), 107601 (2003). [CrossRef] [PubMed]
  17. W. D. Johnston and I. P. Kaminow, “Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3,” Phys. Rev.168(3), 1045–1054 (1968). [CrossRef]
  18. R. Hammoum, M. D. Fontana, P. Bourson, and V. Y. Shur, “Characterization of PPLN-microstructures by means of Raman spectroscopy,” Appl. Phys., A Mater. Sci. Process.91(1), 65–67 (2008). [CrossRef]
  19. V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998). [CrossRef]
  20. P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010). [CrossRef]
  21. V. Y. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev, and D. K. Kuznetsov, “Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals,” J. Appl. Phys.110(5), 052013 (2011). [CrossRef]
  22. J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004). [CrossRef]
  23. A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997). [CrossRef]
  24. R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter12(23), 5053–5059 (2000). [CrossRef]
  25. G. Stone, D. Lee, H. Xu, S. R. Phillpot, and V. Dierolf, “Local probing of the interaction between intrinsic defects and ferroelectric domain walls in lithium niobate,” Appl. Phys. Lett.102(4), 042905 (2013). [CrossRef]
  26. G. Stone and V. Dierolf, “Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate,” Opt. Lett.37(6), 1032–1034 (2012). [CrossRef] [PubMed]
  27. A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett.67(25), 3735–3737 (1995). [CrossRef]
  28. V. Dierolf, C. Sandmann, S. Kim, V. Gopalan, and K. Polgar, “Ferroelectric domain imaging by defect-luminescence microscopy,” J. Appl. Phys.93(4), 2295–2297 (2003). [CrossRef]
  29. P. Molina, D. Sarkar, M. O. Ramirez, J. G. Sole, L. E. Bausa, B. J. Garcia, and J. E. M. Santiuste, “Nd3+ ion shift under domain inversion by electron beam writing in LiNbO3,” Appl. Phys. Lett.90(14), 141901 (2007). [CrossRef]
  30. P. Molina, M. O. Ramirez, J. Garcia Sole, L. E. Bausa, and B. J. Garcia, “Selective rearrangement of Nd3+ centers in LiNbO3 under ferroelectric domain inversion by electron beam writing,” Phys. Rev. B78(1), 014114 (2008). [CrossRef]
  31. E. Montoya, F. Agullo-Rueda, S. Manotas, J. G. Sole, and L. E. Bausa, “Electron-phonon coupling in Yb3+: LiNbO3 laser crystal,” J. Lumin.94-95, 701–705 (2001). [CrossRef]
  32. S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett.73(13), 1814–1816 (1998). [CrossRef]
  33. M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature419(6909), 818–820 (2002). [CrossRef] [PubMed]
  34. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1 Pt 1), 493–508 (2002). [CrossRef] [PubMed]
  35. Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics304(1), 99–103 (2004). [CrossRef]
  36. S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron.45(11), 1465–1472 (2009). [CrossRef]
  37. X. Deng and X. Chen, “Domain wall characterization in ferroelectrics by using localized nonlinearities,” Opt. Express18(15), 15597–15602 (2010). [CrossRef] [PubMed]
  38. N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett.100(22), 221103 (2012). [CrossRef]
  39. T. Kampfe, P. Reichenbach, M. Schroder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B89(3), 035314 (2014). [CrossRef]
  40. L. Mateos, P. Molina, L. E. Bausa, and M. O. Ramirez, “Second harmonic conical waves for symmetry studies in chi((2)) nonlinear photonic crystals,” Appl. Phys. Express4(8), 082202 (2011). [CrossRef]
  41. P. Molina, M. O. Ramirez, B. J. Garcia, and L. E. Bausa, “Directional dependence of the second harmonic response in two-dimensional nonlinear photonic crystals,” Appl. Phys. Lett.96(26), 261111 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited