OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 5 — May. 1, 2014
  • pp: 1092–1103

BBO-sapphire sandwich structure for frequency conversion of high power lasers

Carolin Rothhardt, Jan Rothhardt, Arno Klenke, Thomas Peschel, Ramona Eberhardt, Jens Limpert, and Andreas Tünnermann  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 5, pp. 1092-1103 (2014)
http://dx.doi.org/10.1364/OME.4.001092


View Full Text Article

Enhanced HTML    Acrobat PDF (2555 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on successful joining of a beta barium borate crystal by plasma-activated direct bonding. Based on this technology, a sandwich structure consisting of a beta barium borate crystal, joined with two sapphire heat spreaders has been fabricated. Due to the high thermal conductivity of sapphire, the sandwich structure possesses superior thermal properties compared to the single crystal. Simulations based on the finite element method indicate a significant reduction of thermal gradients and the resulting mechanical stresses. A proof of principle experiment demonstrates the high power capability of the fabricated structure. A pulsed fiber laser emitting up to 253 W average power has been frequency doubled with both a single BBO crystal and the fabricated sandwich structure. The bonded stack showed better heat dissipation and less thermo-optical beam distortion than the single crystal. The work demonstrates the huge potential of optical sandwich structures with enhanced functionality. In particular, frequency conversion at average powers in the kW range with excellent beam quality will be feasible in future.

© 2014 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Nonlinear Optical Materials

History
Original Manuscript: March 10, 2014
Revised Manuscript: April 23, 2014
Manuscript Accepted: April 23, 2014
Published: May 1, 2014

Citation
Carolin Rothhardt, Jan Rothhardt, Arno Klenke, Thomas Peschel, Ramona Eberhardt, Jens Limpert, and Andreas Tünnermann, "BBO-sapphire sandwich structure for frequency conversion of high power lasers," Opt. Mater. Express 4, 1092-1103 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-5-1092


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Maiman, “Stimulated optical radiation in ruby,” Nature187(4736), 493–494 (1960). [CrossRef]
  2. A. E. Siegman, Lasers (University Science Books, 1986).
  3. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum.74(1), 1 (2003). [CrossRef]
  4. A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron.12(2), 163–172 (2006). [CrossRef]
  5. J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express20(10), 10870–10878 (2012). [CrossRef] [PubMed]
  6. S. T. Lin, Y. Y. Lin, Y. C. Huang, A. C. Chiang, and J. T. Shy, “Observation of thermal-induced optical guiding and bistability in a mid-IR continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett.33(20), 2338–2340 (2008). [CrossRef] [PubMed]
  7. J. Rothhardt, S. Demmler, S. Hädrich, T. Peschel, J. Limpert, and A. Tünnermann, “Thermal effects in high average power optical parametric amplifiers,” Opt. Lett.38(5), 763–765 (2013). [CrossRef] [PubMed]
  8. D. N. Nikogosyan, “Beta Barium Borate (BBO): a review of its properties and applications,” Appl. Phys. A368, 359-368 (1991).
  9. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (Wiley, 1997).
  10. Kyocera Headquarters, Single Crystal Sapphire (2010), pp. 1–8.
  11. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys.62(5), 1968 (1987). [CrossRef]
  12. U. Gösele and Q. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci.28(1), 215–241 (1998). [CrossRef]
  13. C. Rothhardt, M. Rekas, G. Kalkowski, N. Haarlammert, R. Eberhardt, and A. Tünnermann, “Fabrication of a high power Faraday isolator by direct bonding,” in Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, S. T. Hendow, ed. (2013), Vol. 8601, p. 86010T–86010T–7.
  14. A. Smith, “SNLO,” http://www.as-photonics.com/snlo .
  15. M. Iwasa, T. Ueno, and R. C. Bradt, “Fracture Toughness of Quartz and Sapphire Single Crystals at Room Temperature,” Zairyo30(337), 1001–1004 (1981). [CrossRef]
  16. G. Kalkowski, S. Risse, C. Rothhardt, M. Rohde, and R. Eberhardt, “Optical contacting of low-expansion materials,” in Optical Manufacturing and Testing IX, J. H. Burge, O. W. Fähnle, and R. Williamson, eds. (SPIE, 2011), Vol. 8126, pp. 1–7.
  17. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Handbook of Optics, Third Edition Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set), Handbook of Optics (McGraw-Hill Education, 2009).
  18. D. Eimerl, S. Velsko, L. Davis, and F. Wang, “Progress in nonlinear optical materials for high power lasers,” Prog. Cryst. Growth Charact. Mater.20(1-2), 59–113 (1990). [CrossRef]
  19. Z. Rappoport, CRC Handbook of Tables for Organic Compound Identification (CRC Press, 1985).
  20. L. Bromley, A. Guy, and D. Hanna, “Synchronously pumped optical parametric oscillation in beta-barium borate,” Opt. Commun.67(4), 3–7 (1988). [CrossRef]
  21. A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, “530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system,” Opt. Lett.38(13), 2283–2285 (2013). [CrossRef] [PubMed]
  22. F. Jansen, F. Stutzki, H. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20, 3997–4008 (2012).
  23. R. Riedel, J. Rothhardt, K. Beil, B. Gronloh, A. Klenke, H. Höppner, M. Schulz, U. Teubner, C. Kränkel, J. Limpert, A. Tünnermann, M. J. Prandolini, and F. Tavella, “Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification,” Opt. Express (submitted to).
  24. S. Kaplan and L. Hanssen, “Normal infrared spectral emittance of Al203,” in Optical Diagnostic Methods for Inorganic Transmissive Materials (SPIE, 1998), Vol. 3425, pp. 120–125.
  25. P. Baum, D. Charalambidis, J. A. Fülöp, U. Kleineberg, F. Krausz, G. Szabó, G. Tsakiris, K. Varjú, L. Veisz, and M. Vrakking, “The Attosecond Light Pulse Source (ALPS) of the Extreme Light Infrastructure (ELI),” http://www.eli-hu.hu/uploads/File/Ceges_doksik_2013/Science/ELI_ALPS_Science_and_Technology.pdf .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited