OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 5 — May. 1, 2014
  • pp: 889–902

Investigation of blue emission from Raman-active crystals: Its origin and impact on laser performance

Jonas Jakutis Neto, Christopher Artlett, Andrew Lee, Jipeng Lin, David Spence, James Piper, Niklaus Ursus Wetter, and Helen Pask  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 5, pp. 889-902 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1787 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The origin and consequences to laser performance of blue emission observed in some Raman crystals has been studied in detail, leading us to attribute the origin of the phenomenon to fluorescence from Tm3+(1G4) impurity ions which are excited via sequential upconversion. For the specific case of a Nd:YLF/KGW Raman laser, we show that the blue fluorescence has modest but significant impacts on laser performance and thermal loading. If the blue fluorescence was eliminated, then laser efficiency could be increased by 15% and thermal loading in the KGW crystal reduced by 17%.

© 2014 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

ToC Category:
Nonlinear Optical Materials

Original Manuscript: December 24, 2013
Revised Manuscript: March 22, 2014
Manuscript Accepted: March 27, 2014
Published: April 1, 2014

Jonas Jakutis Neto, Christopher Artlett, Andrew Lee, Jipeng Lin, David Spence, James Piper, Niklaus Ursus Wetter, and Helen Pask, "Investigation of blue emission from Raman-active crystals: Its origin and impact on laser performance," Opt. Mater. Express 4, 889-902 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, “Stimulated Raman scattering in Nd:KGW laser with diode pumping,” J. Alloy. Comp.300–301(0), 300–302 (2000). [CrossRef]
  2. H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett.30(18), 2454–2456 (2005). [CrossRef] [PubMed]
  3. L. Fan, Y. X. Fan, Y. Q. Li, H. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett.34(11), 1687–1689 (2009). [CrossRef] [PubMed]
  4. A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang, and J. Y. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express18(6), 5984–5992 (2010). [CrossRef] [PubMed]
  5. Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6 nm light produced by sum-frequency generation of diode-end-pumped Nd:YAG/SrWO4 Raman laser,” Laser Phys. Lett.7(7), 491–494 (2010). [CrossRef]
  6. Y. Duan, F. Yang, H. Zhu, Z. Zhu, C. Huang, Z. You, Y. Wei, G. Zhang, and C. Tu, “Continuous-wave 560 nm light generated by intracavity SrWO4 Raman and KTP sum-frequency mixing,” Opt. Commun.283(24), 5135–5138 (2010). [CrossRef]
  7. H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, Y. D. Huang, and N. Ye, “Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite,” Opt. Lett.34(18), 2763–2765 (2009). [CrossRef] [PubMed]
  8. W. Baoshan, T. Huiming, P. Jiying, M. Jieguang, and G. Lanlan, “Low threshold, diode end-pumped Nd3+: GdVO4 self-Raman laser,” Opt. Mater.29(12), 1817–1820 (2007). [CrossRef]
  9. H. Yu, Z. Li, A. J. Lee, J. Li, H. Zhang, J. Wang, H. M. Pask, J. A. Piper, and M. Jiang, “A continuous wave SrMoO4 Raman laser,” Opt. Lett.36(4), 579–581 (2011). [CrossRef] [PubMed]
  10. M. T. Chang, W. Z. Zhuang, K. W. Su, Y. T. Yu, and Y. F. Chen, “Efficient continuous-wave self-Raman Yb:KGW laser with a shift of 89 cm⁻¹,” Opt. Express21(21), 24590–24598 (2013). [CrossRef] [PubMed]
  11. A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W CW laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett.35(5), 682–684 (2010). [CrossRef] [PubMed]
  12. D. J. Spence, X. Li, A. J. Lee, and H. M. Pask, “Modeling of wavelength-selectable visible Raman lasers,” Opt. Commun.285(18), 3849–3854 (2012). [CrossRef]
  13. G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, and T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express20(9), 9810–9818 (2012). [CrossRef] [PubMed]
  14. H. Zhu, Y. Duan, G. Zhang, Y. Zhang, and F. Yang, “Laser induced blue luminescence phenomenon,” Jpn. J. Appl. Phys.50 (Copyright (C) 2011 The Japan Society of Applied Physics), 090203 (2011).
  15. I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, and A. S. Grabtchikov, “On the influence of dopant ions on blue emission in KGW crystal excited by infrared laser radiation,” J. Appl. Spectrosc.79(1), 38–45 (2012). [CrossRef]
  16. I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, and A. S. Grabtchikov, “Transformation of optical properties of crystal media (KGW, YVO4) exposed to quasi-continuous laser radiation in the range of the transmission band of the medium,” Opt. Spectrosc.115(3), 325–334 (2013). [CrossRef]
  17. Y. F. Chen, “Efficient 1521-nm Nd:GdVO4 Raman laser,” Opt. Lett.29(22), 2632–2634 (2004). [CrossRef] [PubMed]
  18. N. Zong, Q. J. Cui, Q. L. Ma, X. F. Zhang, Y. F. Lu, C. M. Li, D. F. Cui, Z. Y. Xu, H. J. Zhang, and J. Y. Wang, “High average power 1.5 microm eye-safe Raman shifting in BaWO4 crystals,” Appl. Opt.48(1), 7–10 (2009). [CrossRef] [PubMed]
  19. Y. T. Chang, K. W. Su, H. L. Chang, and Y. F. Chen, “Compact efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd:YVO4 crystal as a self-Raman medium,” Opt. Express17(6), 4330–4335 (2009). [CrossRef] [PubMed]
  20. R. Lisiecki, W. Ryba-Romanowski, and T. Lukasiewicz, “Blue up-conversion with excitation into Tm ions at 808 nm in YVO4 crystals co-doped with thulium and ytterbium,” Appl. Phys. B81(1), 43–47 (2005). [CrossRef]
  21. F. Güell, X. Mateos, J. Gavaldà, R. Solé, M. Aguiló, D. Amp, F. Díaz, M. Galan, and J. Massons, “Optical characterization of Tm3+-doped KGd(WO4)2 single crystals,” Opt. Mater.25(1), 71–77 (2004).
  22. F. Güell, X. Mateos, J. Gavaldà, R. Solé, M. Aguiló, D. Amp, F. Díaz, and J. Massons, “Blue luminescence in Tm3+-doped KGd(WO4)2 single crystals,” J. Lumin.106(2), 109–114 (2004). [CrossRef]
  23. Y. Yang, B. Yao, B. Chen, C. Wang, G. Ren, and X. Wang, “Judd–Ofelt analysis of spectroscopic properties of Tm3+, Ho3+ doped GdVO4 crystals,” Opt. Mater.29(9), 1159–1165 (2007). [CrossRef]
  24. F. S. Ermeneux, C. Goutaudier, R. Moncorgé, M. T. Cohen-Adad, M. Bettinelli, and E. Cavalli, “Growth and fluorescence properties of Tm3+ doped YVO4 and Y2O3 single crystals,” Opt. Mater.8(1–2), 83–90 (1997). [CrossRef]
  25. K. H. Esbensen, D. Guyot, and F. Westad, Multivariate Data Analysis: In Practice (Camo, 2000).
  26. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer-Verlag, 1981).
  27. R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Top. Quantum Electron.3(4), 1100–1102 (1997). [CrossRef]
  28. X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, and D. J. Spence, “Miniature wavelength-selectable Raman laser: new insights for optimizing performance,” Opt. Express19(25), 25623–25631 (2011). [CrossRef] [PubMed]
  29. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express15(11), 7038–7046 (2007). [CrossRef] [PubMed]
  30. T. Omatsu, M. Okida, A. Lee, and H. M. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” J. Appl. Phys. B108(1), 73–79 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited