OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 5 — May. 1, 2014
  • pp: 916–923

Nematic liquid crystal nanocomposite with scattering-free, microsecond electro-optic response

Yo Inoue, Hiroyuki Yoshida, and Masanori Ozaki  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 5, pp. 916-923 (2014)
http://dx.doi.org/10.1364/OME.4.000916


View Full Text Article

Enhanced HTML    Acrobat PDF (1264 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a microsecond electro-optic response in an anisotropic-polymer/liquid-crystal composite, which forms a homogeneously mixed structure in the nanoscale range owing to the high miscibility between them. The nanocomposite was fabricated by photopolymerizing a nematic liquid crystal (NLC) mixture doped with a cross-linkable mesogenic monomer at a concentration of 30 wt%. Our system is inherently different from polymer-dispersed liquid crystals in that the LC molecules are almost miscible in the anisotropic polymer matrix and do not form observable domains. When an electric field is applied to such a nanocomposite, the molecular alignment of the polymer matrix is retained, while the non-polymerizable NLC reorients along the electric field, leading to a shift in the birefringence. Furthermore, the reorientation of the NLC molecules in a space sufficiently smaller than the wavelength of visible light results in scattering-free characteristics over the entire visible wavelength range and a short decay response time of 15 μs.

© 2014 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.4670) Materials : Optical materials
(160.5470) Materials : Polymers

ToC Category:
Liquid Crystals

History
Original Manuscript: March 3, 2014
Revised Manuscript: March 27, 2014
Manuscript Accepted: March 27, 2014
Published: April 3, 2014

Virtual Issues
Optical Materials for Flat Panel Displays (2013) Optical Materials Express

Citation
Yo Inoue, Hiroyuki Yoshida, and Masanori Ozaki, "Nematic liquid crystal nanocomposite with scattering-free, microsecond electro-optic response," Opt. Mater. Express 4, 916-923 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-5-916


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. den Boer, Active Matrix Liquid Crystal Displays: Fundamentals and Applications (Elsevier, 2005).
  2. S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).
  3. L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys.44(44), 442002 (2011). [CrossRef]
  4. P. Kirsch and M. Bremer, “Nematic liquid crystals for active matrix displays: molecular design and synthesis,” Angew. Chem. Int. Ed.39(23), 4216–4235 (2000). [CrossRef]
  5. R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys.43(5), 2029–2037 (1972). [CrossRef]
  6. F. Nakano, H. Kawakami, H. Morishita, and M. Sato, “Dynamic properties of twisted nematic liquid Crystal Cells,” Jpn. J. Appl. Phys.19(4), 659–663 (1980). [CrossRef]
  7. H.-Y. Chen, W. Lee, and N. A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett.90(3), 033510 (2007). [CrossRef]
  8. C.-Y. Huang, H.-C. Pan, and C.-T. Hsieh, “Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys.45(8A), 6392–6394 (2006). [CrossRef]
  9. S. E. Hicks, S. P. Hurley, R. S. Zola, and D. Yang, “Polymer stabilized VA mode liquid crystal display,” J. Disp. Tech.7(11), 619–623 (2011). [CrossRef]
  10. H. Ren, S. Xu, Y. Liu, and S.-T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express21(7), 7916–7925 (2013). [CrossRef] [PubMed]
  11. J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., B, Polym. Phys.52(3), 183–192 (2014). [CrossRef]
  12. Y.-C. Yang and D.-K. Yang, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett.98(2), 023502 (2011). [CrossRef]
  13. M. Mucha, “Polymer as an important component of blends and composites with liquid crystals,” Prog. Polym. Sci.28(5), 837–873 (2003). [CrossRef]
  14. D. Coates, “Polymer-dispersed liquid crystals,” J. Mater. Chem.5(12), 2063–2072 (1995). [CrossRef]
  15. S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys.50, 051703 (2011).
  16. R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys.43(5), 2029–2037 (1972). [CrossRef]
  17. H. R. Wilson and W. Eck, “Transmission variation using scattering / transparent switching films,” Sol. Energy Mater. Sol. Cells31(2), 197–214 (1993). [CrossRef]
  18. S. Matsmoto, M. Houlbert, T. Hayashi, and K. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett.69(8), 1044–1046 (1996). [CrossRef]
  19. N. Colthup, Introduction to Infrared and Raman Spectroscopy (Academic Press, 1990).
  20. Y. W. Hui and M. M. Labes, “Structure and order parameter of a nematic lyotropic liquid crystal studied by FTIR spectroscopy,” J. Phys. Chem.90(17), 4064–4067 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited