OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 5 — May. 1, 2014
  • pp: 924–933

Highly efficient blue emitting materials based on indenopyrazine derivatives for OLEDs [Invited]

Hayoon Lee, Young IL Park, Beomjin Kim, Ji-Hoon Lee, and Jongwook Park  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 5, pp. 924-933 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (765 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two indenopyrazine compounds for organic light emitting diodes were synthesized with phenanthrene or pyrene side groups that have high photoluminescence (PL) quantum efficiency (QE); 6,6,12,12-Tetraethyl-2,8-di-phenanthren-9-yl-6,12-dihydro-diindeno[1,2-b;1',2'-e]pyrazine (PA-EIP) and 2-(10b,10c-Dihydro-pyren-1-yl)-6,6,12,12-tetraethyl-8-pyren-1-yl-6,12-dihydro-diindeno[1,2-b;1',2'-e]pyrazine (PY-EIP). The PL spectra of PA-EIP and PY-EIP in film state were 440 nm and 468nm in the blue region, respectively. Td values for PA-EIP and PY-EIP were very high at 432°C and 441°C. Tm values were 385°C and 390°C for PA-EIP and PY-EIP. When the synthesized compounds were used as emitting layers in non-doped OLED devices, PA-EIP and PY-EIP showed luminance efficiencies of 1.35 and 5.15 cd/A, power efficiencies of 0.69 and 2.81 lm/W, and CIEs of (0.17, 0.15) and (0.19, 0.30), respectively. This result shows that efficiency of final emitter increases with increasing efficiency of side group. Additionally, in the solution-processed white OLED devices using PY-EIP as one of emitting materials, the device showed high luminance efficiency of 3.95 cd/A, power efficiency of 2.45 lm/W and CIE value of (0.269, 0.294) at 6 V.

© 2014 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(230.3670) Optical devices : Light-emitting diodes
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Organic Compounds for OLEDs

Original Manuscript: February 27, 2014
Revised Manuscript: March 29, 2014
Manuscript Accepted: April 1, 2014
Published: April 7, 2014

Virtual Issues
Optical Materials for Flat Panel Displays (2013) Optical Materials Express

Hayoon Lee, Young IL Park, Beomjin Kim, Ji-Hoon Lee, and Jongwook Park, "Highly efficient blue emitting materials based on indenopyrazine derivatives for OLEDs [Invited]," Opt. Mater. Express 4, 924-933 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. W. Tang, S. A. Van Slyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987). [CrossRef]
  2. M. F. Wu, S. J. Yeh, C. T. Chen, H. Murayama, T. Tsuboi, W. S. Li, I. Chao, S. W. Liu, J. K. Wang, “The Quest for High-Performance Host Materials for Electrophosphorescent Blue Dopants,” Adv. Funct. Mater. 17(12), 1887–1895 (2007). [CrossRef]
  3. Y. Dienes, S. Durben, T. Kárpáti, T. Neumann, U. Englert, L. Nyulászi, T. Baumgartner, “Selective tuning of the band gap of π-conjugated dithieno[3,2-b:2′,3′-d]phospholes toward different emission colors,” Chemistry 13(26), 7487–7500 (2007). [CrossRef] [PubMed]
  4. C. Pérez-Bolívar, S. Y. Takizawa, G. Nishimura, V. A. Montes, P. Anzenbacher., “High-efficiency tris(8-hydroxyquinoline)aluminum (Alq3) complexes for organic white-light-emitting diodes and solid-state lighting,” Chemistry 17(33), 9076–9082 (2011). [CrossRef] [PubMed]
  5. M. C. Gather, A. Kohnen, A. Falcou, H. Becker, K. Meerholz, “Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography,” Adv. Funct. Mater. 17(2), 191–200 (2007). [CrossRef]
  6. C. Liu, Y. Li, Y. Zhang, C. Yang, H. Wu, J. Qin, Y. Cao, “Solution-processed, undoped, deep-blue organic light-emitting diodes based on starburst oligofluorenes with a planar triphenylamine core,” Chemistry 18(22), 6928–6934 (2012). [CrossRef] [PubMed]
  7. S. K. Kim, Y. I. Park, I. N. Kang, J. H. Lee, J. W. Park, “New deep-blue emitting materials based on fully substituted ethylene derivatives,” J. Mater. Chem. 17(44), 4670–4678 (2007). [CrossRef]
  8. S. K. Kim, B. Yang, Y. Ma, J. H. Lee, J. Park, “Exceedingly efficient deep-blue electroluminescence from new anthracenes obtained using rational molecular design,” J. Mater. Chem. 18(28), 3376–3384 (2008). [CrossRef]
  9. B. Kim, Y. Park, J. Lee, D. Yokoyama, J. H. Lee, J. Kido, J. Park, “Synthesis and electroluminescence properties of highly efficient blue fluorescence emitters using dual core chromophores,” J. Mater. Chem. C 1(3), 432–440 (2012). [CrossRef]
  10. H. Park, J. Lee, I. Kang, H. Y. Chu, J. I. Lee, S. K. Kwon, Y. H. Kim, “Highly rigid and twisted anthracene derivatives: a strategy for deep blue OLED materials with theoretical limit efficiency,” J. Mater. Chem. 22(6), 2695–2700 (2012). [CrossRef]
  11. Z. Q. Wang, C. Xu, W. Z. Wang, L. M. Duan, Z. Li, B. T. Zhao, B. M. Ji, “High-color-purity and high-efficiency non-doped deep-blue electroluminescent devices based on novel anthracene derivaties,” New J. Chem. 36(3), 662–667 (2012). [CrossRef]
  12. C. H. Wu, C. H. Chien, F. M. Hsu, P. I. Shih, C. F. Shu, “Efficient non-doped blue-light-emitting diodes incorporating an anthracene derivative end-capped with fluorene groups,” J. Mater. Chem. 19(10), 1464–1470 (2009). [CrossRef]
  13. S. L. Lai, Q. X. Tong, M. Y. Chan, T. W. Ng, M. F. Lo, S. T. Lee, C. S. Lee, “Distinct electroluminescent properties of triphenylamine derivatives in blue organic light-emitting devices,” J. Mater. Chem. 21(4), 1206–1211 (2011). [CrossRef]
  14. C. Hosokawa, H. Higashi, H. Nakamura, T. Kusumoto, “Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant,” Appl. Phys. Lett. 67(26), 3853–3855 (1995). [CrossRef]
  15. Y. I. Park, J. H. Son, J. S. Kang, S. K. Kim, J. H. Lee, J. W. Park, “Synthesis and electroluminescence properties of novel deep blue emitting 6,12-dihydro-diindeno[1,2-b;1'2'-e]pyrazine derivatives,” Chem. Comm. 18, 2143-2145 (2008).
  16. X. Kong, A. P. Kulkarni, S. A. Jenekhe, “Phenothiazine-based conjugated polymers: synthesis, electrochemistry, and light-emitting properties,” Macromolecules 36(24), 8992–8999 (2003). [CrossRef]
  17. D. Wang, Z. Wu, X. Zhang, B. Jiao, S. Liang, D. Wang, R. He, X. Hou, “Solution-processed organic films of multiple small-molecules and white light-emitting diodes,” Org. Electron. 11(4), 641–648 (2010). [CrossRef]
  18. S. K. Kim, B. Yang, Y. I. Park, Y. Ma, J. Y. Lee, H. J. Kim, J. Park, “Synthesis and electroluminescent properties of highly efficient anthracene derivatives with bulky side groups,” Org. Electron. 10(5), 822–833 (2009). [CrossRef]
  19. S. L. Murov, I. Carmicheal, and G. L. Hug, in Handbook of Photochemistry 2nd ed, M. Dekker, ed. (Talyor& Francis, New York, 1993)
  20. B. I. Berlman, in Handbook of Fluorescence Spectra of Aromatic Molecules (Academic Press, 1971)
  21. S. Ates, A. Yildiz, “Determination of the absolute quantum efficiency of the luminescence of crystalline anthracene and of meso-dimeso derivatives using photoacoustic spectroscopy,” J. Chem. Soc., Faraday Trans. I 79(12), 2853–2861 (1983). [CrossRef]
  22. R. Katoh, K. Suzuki, A. Furube, M. Kotani, K. Tokumaru, “Fluorescence quantum yield of aromatic hydrocarbon crystals,” J. Phys. Chem. C 113(7), 2961–2965 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited