OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 5 — May. 1, 2014
  • pp: 934–943

Homeotropic orientation of nematic liquid crystals induced by dissolving polypropyleneimine dendrimer having peripheral mesogens

Osamu Haba, Daigo Hiratsuka, Takenori Shiraiwa, Nami Funakoshi, Hiroshi Awano, Tomonori Koda, Tatsuhiro Takahashi, Koichiro Yonetake, Musun Kwak, Yuichi Momoi, Nakwon Kim, Sangpyo Hong, Dongwoo Kang, and Youngseok Choi  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 5, pp. 934-943 (2014)
http://dx.doi.org/10.1364/OME.4.000934


View Full Text Article

Enhanced HTML    Acrobat PDF (1508 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A mixture of nematic liquid crystals (NLCs) with a small amount of a polypropyleneimine-based liquid crystalline dendrimer (D-6PC5 and D-6PPCN) exhibited spontaneous homeotropic alignment between the native glass substrates. This dendrimer-induced homeotropic alignment required two conditions; 1) the dendrimer completely dissolves in the NLC, and 2) a substrate surface is hydrophilic with the surface free energy above approximately 65 mN·m−1. The interdigitated-electrode cells without any surface treatment of the substrates were fabricated by filling with the LC dendrimer (D-6PC5)/nematic LC mixtures. They exhibited an electro-optical behavior when applying AC, vertical-alignment drive occurred in the cells. Based on these results, we speculated that the dendrimer adsorbs on the substrate surface and acts as a vertical alignment layer.

© 2014 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(240.6700) Optics at surfaces : Surfaces

ToC Category:
Liquid Crystals

History
Original Manuscript: February 5, 2014
Revised Manuscript: February 28, 2014
Manuscript Accepted: February 28, 2014
Published: April 7, 2014

Virtual Issues
Optical Materials for Flat Panel Displays (2013) Optical Materials Express

Citation
Osamu Haba, Daigo Hiratsuka, Takenori Shiraiwa, Nami Funakoshi, Hiroshi Awano, Tomonori Koda, Tatsuhiro Takahashi, Koichiro Yonetake, Musun Kwak, Yuichi Momoi, Nakwon Kim, Sangpyo Hong, Dongwoo Kang, and Youngseok Choi, "Homeotropic orientation of nematic liquid crystals induced by dissolving polypropyleneimine dendrimer having peripheral mesogens," Opt. Mater. Express 4, 934-943 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-5-934


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. -S. Seo, K. Muroi, and S. Kobayashi, “Generation of pretilt angles in nematic liquid crystal, 5CB, media aligned on polyimide films prepared by spin-coating and LB techniques: effect of rubbing,” Mol. Cryst. Liq. Cryst., Sci. Technol., A, Mol. Cryst. Liq. Cryst.213, 223–228 (1992). [CrossRef]
  2. N. A. J. M. van Aerle, M. Barmentlo, and R. W. J. Hollering, “Effect of rubbing on the molecular orientation within polyimide orienting layers of liquid-crystal displays,” J. Appl. Phys.74, 3111–3120 (1993). [CrossRef]
  3. M. G. Samant, J. Stöhr, H. R. Brown, T. P. Russell, J. M. Sands, and S. K. Kumar, “NEXAFS Studies on the surface orientation of buffed polyimides,” Macromolecules29, 8334–8342 (1996). [CrossRef]
  4. K. Shirota, M. Yaginuma, T. Sakai, K. Ishikawa, H. Takezoe, and A. Fukuda, “Surface orientation of cyanobiphenyl liquid crystal monolayer and pretilt angle under various rubbing strengths,” Jpn. J. Appl. Phys35, 2275–2279 (1996). [CrossRef]
  5. J. -M. Han, J. -Y. Hwang, D. -S. Seo, S. -K. Lee, and J. -U. Lee, “Washing effects on the anchoring energy and surface order parameter on rubbed polymer surfaces containing the trifluoromethyl moiety,” Liq. Cryst.31, 1259–1264 (2004). [CrossRef]
  6. J. C. Jung, K. H. Lee, B. S. Sohn, S. W. Lee, and M. Ree, “Novel polypyromellitimides and their liquid crystal aligning properties,” Macromol. Symp.164, 227–238 (2001). [CrossRef]
  7. J. -Y. Hwang, S. H. Lee, S. K. Paek, and D. -S. Seo, “Tilt angle generation for nematic liquid crystal on blended homeotropic polyimide layer containing trifluoromethyl moieties,” Jpn. J. Appl. Phys.42, 1713–1714 (2003). [CrossRef]
  8. M. Oh-e, H. Yokoyama, and D. Kim, “Mapping molecular conformation and orientation of polyimide surfaces for homeotropicliquid crystal alignment by nonlinear optical spectroscopy,” Phys. Rev. E.69,051705 (2004). [CrossRef]
  9. Y. J. Lee, Y. W. Kim, J. D. Ha, J. M. Oh, and M. H. Yi, “Synthesis and characterization of novel polyimides with 1-octadecyl side chains for liquid crystal alignment layers,” Polym. Adv. Technol.18, 226–234 (2007). [CrossRef]
  10. K. Usami, K. Sakamoto, J. Yokota, Y. Uehara, and S. Ushioda, “Polyimide photo-alignment layers for inclined homeotropic alignment of liquid crystal molecules,” Thin Solid Films516, 2652–2655 (2008). [CrossRef]
  11. Y. -Q. Fang, J. Wang, Q. Zhang, Y. Zeng, and Y. -H. Wang, “Synthesis of soluble polyimides for vertical alignment of liquid crystal via one-step method,” Eur. Polym. J.46, 1163–1167 (2010). [CrossRef]
  12. M. Nakamura, Y. Hashimoto, T. Shinomiya, and S. Mizushima, “Liquid crystal display device,” US Patent, US7719656 B2 (2006).
  13. S. -C. Jeng, C. -W. Kuo, H. -L. Wang, and C. -C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett.91,061112 (2007). [CrossRef]
  14. S. -J. Hwang, S. -C. Jeng, C. -Y. Yang, C. -W. Kuo, and C. -C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D: Appl. Phys.42,025102 (2008). [CrossRef]
  15. W. -Y. Teng, S. -C. Jeng, C. -W. Kuo, Y. -R. Lin, C. -C. Liao, and W. -K. Chin, “Nanoparticles-doped guest-host liquid crystal displays,” Opt. Lett.33, 1663–1665 (2008). [CrossRef] [PubMed]
  16. W. -Y. Teng, S. -C. Jeng, J. -M. Ding, C. -W. Kuo, and W. -K. Chin, “Flexible homeotropic liquid crystal displays using low-glass-transition-temperature poly(ethylene terephthalate) substrates,” Jpn. J. Appl. Phys.49,010205 (2010). [CrossRef]
  17. Y. H. Kim, “Lyotropic liquid crystalline hyperbranched aromatic polyamides,” J. Am. Chem. Soc.114, 4947–4948 (1992). [CrossRef]
  18. V. Percec, P. Chu, G. Ungar, and J. Zhou, “Rational design of the first nonspherical dendrimer which displays calamitic nematic and smectic thermotropic liquid crystalline phases,” J. Am. Chem. Soc.117, 11441–11454 (1995). [CrossRef]
  19. K. Lorenz, D. Hölter, B. Stühn, R. Mülhaupt, and H. Frey, “A mesogen-functionized carbosilane dendrimer: a dendritic liquid crystalline polymer,” Adv. Mater.8, 414–416 (1996). [CrossRef]
  20. K. Yonetake, T. Masuko, T. Morishita, K. Suzuki, M. Ueda, and R. Nagahata, “Poly(propyleneimine) dendrimers peripherally modified with mesogens,” Macromolecules32, 6578–6586 (1999). [CrossRef]
  21. O. Haba, K. Okuyama, H. Osawa, and K. Yonetake, “Structures and properties of dendrimers having peripheral 2,3-difluorobiphenyl mesogenic units: effects of dendrimer generation,” Liq. Cryst.32, 633–642 (2005). [CrossRef]
  22. O. Haba, D. Hiratsuka, T. Shiraiwa, T. Koda, K. Yonetake, Y. Momoi, and K. Furuta, “Synthesis and characterization of polypropyleneimine dendrimers having peripheral mesogenic groups: homeotropic orientation and mesogen Structure,” Mol. Cryst. Liq. Cryst.574, 84–95 (2013). [CrossRef]
  23. Y. Momoi, M. Kwak, D. Choi, Y. Choi, K. Jeong, T. Koda, O. Haba, and K. Yonetake, “Polyimide-free LCD by dissolving dendrimers,” J. Soc. Inf. Display.20, 486–492 (2012). [CrossRef]
  24. T. Koda, T. Mitsuyoshi, A. Kanazawa, A. Nishioka, K. Miyata, G. Murasawa, S. Ikeda, T. Miura, and Y. Kimura, “Effect of charge transfer complex on electrical properties of 4-cyano-4′-pentylbiphenyl,” Jpn. J. Appl. Phys.48121404 (2009). [CrossRef]
  25. D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” 12, 1741–1747 (1969).
  26. A. H. Barber, S. R. Cohen, and H. D. Wagner, “Static and dynamic wetting measurements of single carbon nanotubes,” Phys. Rev. Lett.92,186103 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited