OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 5 — May. 1, 2014
  • pp: 944–952

Large area plasmonic nanoparticle arrays with well-defined size and shape

Sarah-Katharina Meisenheimer, Sabrina Jüchter, Oliver Höhn, Hubert Hauser, Christine Wellens, Volker Kübler, Elizabeth von Hauff, and Benedikt Bläsi  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 5, pp. 944-952 (2014)
http://dx.doi.org/10.1364/OME.4.000944


View Full Text Article

Enhanced HTML    Acrobat PDF (2939 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an innovative process to fabricate uniformly shaped plasmonic nanoparticles. Laser interference lithography, nano-imprint lithography and a lift-off process are employed for the controlled production of periodically arranged nanoparticles on large areas. Round and elliptic silver particles with diameters of about 200 nm on an area of 5×5 cm 2 are investigated. Measurements of resonant absorption by the metal particles are in agreement with data computer-simulated by rigorous coupled wave analysis. We observe that the plasmonic resonance of elliptic particles depends on the polarization of incident light and that porosity of the metal influences the plasmonic band.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(260.5430) Physical optics : Polarization
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nanomaterials

History
Original Manuscript: February 6, 2014
Revised Manuscript: February 28, 2014
Manuscript Accepted: March 2, 2014
Published: April 7, 2014

Citation
Sarah-Katharina Meisenheimer, Sabrina Jüchter, Oliver Höhn, Hubert Hauser, Christine Wellens, Volker Kübler, Elizabeth von Hauff, and Benedikt Bläsi, "Large area plasmonic nanoparticle arrays with well-defined size and shape," Opt. Mater. Express 4, 944-952 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-5-944


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, 2007).
  2. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012). [CrossRef] [PubMed]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  4. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  5. M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys.44(28), 283001 (2011). [CrossRef]
  6. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B17(11), 1906–1913 (2000). [CrossRef]
  7. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012). [CrossRef] [PubMed]
  8. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000). [CrossRef] [PubMed]
  9. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002). [CrossRef]
  10. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007). [CrossRef] [PubMed]
  11. J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with beta-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells94(12), 2395–2398 (2010). [CrossRef]
  12. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.)135(8), 1839–1854 (2010). [CrossRef] [PubMed]
  13. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024001 (2012).
  14. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995). [CrossRef]
  15. Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovoltaics Res. Appl.online,1-11 (2011).
  16. M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topic, and J. Krc, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011). [CrossRef] [PubMed]
  17. Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology21(23), 235201 (2010). [CrossRef] [PubMed]
  18. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012). [CrossRef] [PubMed]
  19. K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull.36(06), 461–467 (2011). [CrossRef]
  20. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011). [CrossRef] [PubMed]
  21. T. Nishino, N. Fujii, H. Miyake, T. Yukawa, J. Sakamoto, R. Suzuki, H. Kawata, and Y. Hirai, “Metal liftoff process using solvent soluble resist by UV-NIL,” J. Photopolym. Sci. Technol.23(1), 87–90 (2010). [CrossRef]
  22. Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20(10), 11466–11477 (2012). [CrossRef] [PubMed]
  23. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci.164(1-4), 111–117 (2000). [CrossRef]
  24. A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng.98, 293–296 (2012). [CrossRef]
  25. A. Gombert, J. Mick, W. Hoßfeld, M. Niggemann, B. Bläsi, C. Bühler, and P. Nitz, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004). [CrossRef]
  26. H. Hauser, B. Michl, S. Schwarzkopf, V. Kübler, C. Müller, M. Hermle, and B. Bläsi, “Honeycomb texturing of Silicon via nanoimprint lithography for solar cell applications,” IEEE Journal of Photovoltaics2(2), 114–122 (2012). [CrossRef]
  27. S. Jüchter, H. Hauser, C. Wellens, M. Peters, J. C. Goldschmidt, U. T. Schwarz, and B. Bläsi, “Preparation of periodically arranged metallic nanostructures using nanoimprint lithography,” Proceedings of the SPIE Photonics Europe - Photonics for Solar Energy Systems (2012). [CrossRef]
  28. C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys.126(19), 194702 (2007). [CrossRef] [PubMed]
  29. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981). [CrossRef]
  30. Web page of temicon GmbH, www.temicon.com .
  31. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002). [CrossRef]
  32. “Processing guidelines: mr-UVcur06,” (Micro Resist Technology).
  33. G. S. Oehrlein, “Reactive-Ion Etching,” Phys. Today39(10), 26–33 (1986). [CrossRef]
  34. J. D. Jackson, Classical Electrodynamics (Wiley India Pvt. Limited, 1962).
  35. R. Petit and L. C. Botten, Electromagnetic Theory of Gratings (Springer-Verlag, 1980).
  36. P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization,” J. Mod. Opt.45(7), 1357–1374 (1998). [CrossRef]
  37. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
  38. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik416(7), 636–664 (1935). [CrossRef]
  39. E. D. Palik, Handbook of Optical Constants of Solids, Volumes I, II, and III: Subject Index and Contributor Index (Elsevier Science & Tech, 1985).
  40. N. P. Hylton, X. F. Li, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited