OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 5 — May. 1, 2014
  • pp: 982–996

Holographic nanoparticle-polymer composites based on radical-mediated thiol-yne photopolymerizations: characterization and shift-multiplexed holographic digital data page storage

Ken Mitsube, Yuki Nishimura, Kohta Nagaya, Shingo Takayama, and Yasuo Tomita  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 5, pp. 982-996 (2014)
http://dx.doi.org/10.1364/OME.4.000982


View Full Text Article

Enhanced HTML    Acrobat PDF (3267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate volume holographic recording in a photopolymerizable nanoparticle-polymer (NPC) composite film that employs radical-mediated thiol-yne step-growth photopolymerizations. Because each alkyne functional group can react consecutively with two thiol functional groups in thiol-yne photopolymerizatins, the thiol-yne based NPC system dispersed with inorganic nanoparticles has the potentiality to overcome the drawback of low crosslinking densities but to retain the advantage of low shrinkage that is possible by use of thiol-ene photopolymerizations. We show that a thiol-yne based NPC film dispersed with 25 vol.% SiO2 nanoparticles and 15 wt.% single functional co-monomer gives the saturated refractive index change as large as 0.008 and the material recording sensitivity as high as 2005 cm/J at a recording and readout wavelength of 532 nm. We find that while the shrinkage of a volume hologram recorded in a thiol-yne based NPC dispersed with organic nanopartices can be as low as 0.5%, it is approximately 1% with the dispersion of SiO2 nanoparticles due to the plasticizing effect of the doped co-monomer. On the other hand, the thermal stability is improved better with the dispersion of SiO2 nanoparticles. We also demonstrate shift-multiplexed holographic storage of 80 digital data pages in a thiol-yne based NPC film with high readout fidelity.

© 2014 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.5470) Materials : Polymers
(210.2860) Optical data storage : Holographic and volume memories
(210.4810) Optical data storage : Optical storage-recording materials
(160.4236) Materials : Nanomaterials
(160.5335) Materials : Photosensitive materials

ToC Category:
Organics and Polymers

History
Original Manuscript: December 3, 2013
Revised Manuscript: February 24, 2014
Manuscript Accepted: March 14, 2014
Published: April 15, 2014

Citation
Ken Mitsube, Yuki Nishimura, Kohta Nagaya, Shingo Takayama, and Yasuo Tomita, "Holographic nanoparticle-polymer composites based on radical-mediated thiol-yne photopolymerizations: characterization and shift-multiplexed holographic digital data page storage," Opt. Mater. Express 4, 982-996 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-5-982


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Tomita, “Holographic Nanoparticle-Photo- polymerComposites, in NalwaH.S. ed. Encyclopedia of Nanoscience and Nanotechnology15 (American ScientificPublishers, Valencia,2011), p. 191.
  2. Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett.30, 839–841 (2005). [CrossRef] [PubMed]
  3. Y. Tomita, K. Chikama, Y. Nohara, N. Suzuki, K. Furushima, and Y. Endoh, “Two-dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film,” Opt. Lett.31, 1402–1404 (2006). [CrossRef] [PubMed]
  4. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett.81, 4121–4123 (2002). [CrossRef]
  5. A.T. Juhhl, J.D. Busbee, J.J. Koval, L.V. Natarajan, V.P. Tondiglia, R.A. Vaia, T.J. Bunning, and P.V. Braun, “Holographically directed aseembly of polymer nanocomposites,” ACS NANO4, 5953–5961 (2010). [CrossRef]
  6. T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:I. General approach to choice of components of nano composites and their holographic properties,” Opt. Spectrosc.110, 135–142 (2011). [CrossRef]
  7. T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:II. Mechanism of formation of polymer-nanoparticle bulk periodic structure and effect of parameters of forming field on structure efficiency,” Opt. Spectrosc.110, 143–150 (2011). [CrossRef]
  8. Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Opt. Lett.33, 1750–1752 (2008). [CrossRef] [PubMed]
  9. N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt.43, 2125–2129 (2004). [CrossRef] [PubMed]
  10. C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater.5, 1623–1629 (2005). [CrossRef]
  11. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14, 12712–12719 (2006). [CrossRef] [PubMed]
  12. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 1071103 (2006). [CrossRef]
  13. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14, 12712–12719 (2006). [CrossRef] [PubMed]
  14. I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE6252, 625206 (2006).
  15. O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2and TiO2nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology18, 1057041–1057047 (2007). [CrossRef]
  16. K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2nanoparticle-photopolymer composite materials,” J. Appl. Phys.103, 1131081–1131086 (2008). [CrossRef]
  17. O.V. Sakhno, T.N. Smirnova, L.M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposited,” Mater. Sci. Eng.C28, 28–35 (2008). [CrossRef]
  18. T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt.11, 0240101–0240107 (2009). [CrossRef]
  19. X. Liu, Y. Tomita, J. Oshima, K. Chikama, K. Matsubara, T. Nakashima, and T. Kawai, “Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%,” Appl. Phys. Lett.95, 2611091–2611093 (2009).
  20. T.N. Smirnova, O.V. Sakhno, P.V. Yezhov, L.M. Kokhtych, L.V. Goldenberg, and J. Stumpe, “Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method,” Nanotechnology20, 2457071–2457079 (2009). [CrossRef]
  21. K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2nanoparticle-polymer composites at 404 nm,” J. Appl. Phys.107, 0231071–0231076 (2010).
  22. M. Moothanchery, I. Naydenova, S. Mintova, and V. Toal, “Nanozeolites doped photopolymer layers with reduced shrinkage,” Opt. Express19, 25786–25791 (2011). [CrossRef]
  23. I. Naydenova, E. Leite, Tz. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanozeolites molecular sieves,” J. Opt.13, 0440191–04401910 (2011). [CrossRef]
  24. L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thiol-ene photopolymerization,” Chem. Mater.15, 2477–2484 (2003). [CrossRef]
  25. J.A. Carioscia, H. Lu, J.W. Stanbury, and C.N. Bowman, “Thiol-ene oligomers as dental restrative materials,” Dent. Mater.21, 1137–1143 (2005). [CrossRef] [PubMed]
  26. L. Dhar, M.G. Schnoes, H.E. Katz, A. Hale, M.L. Schilling, and A.L. Harris, “Photopolymers for Digital Holographic Data Storage,” in H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage (Springer, 2000). [CrossRef]
  27. G. Odian, Principles of Polymerization, 4th edition (Wiley, 1994), Chap. 2, p.110.
  28. C.E. Hoyle, T.Y. Lee, and T. Roper, “Thol-enes: Chemistry of the past with promise for the future,” J. Polym. Sci. part A:Polym. Chem.42, 5301–5338 (2004). [CrossRef]
  29. C.E. Hoyle and C.N. Bowman, “Thiol-ene click chemistry,” Angew. Chem. Int. Ed.49, 1540–1573 (2010). [CrossRef]
  30. D.P. Nair, N.B. Cramer, T.F. Scott, C.N. Bowman, and R. Shandas, “Photopolymerizd thiol-ene systems as shape memory polymers,” Polymer51, 4383–4389 (2010). [CrossRef]
  31. B.D. Fairbanks, T.F. Scott, C.J. Kloxin, K.S. Anseth, and C.N. Bowman, “Thiol-yne photopolymerizations: Novel mechanism, kinetics, and step-growth formation of highly cross-linked networks,” Macromolecules42, 211–217 (2009). [CrossRef] [PubMed]
  32. E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett.35, 396–398 (2010). [CrossRef] [PubMed]
  33. E. Hata, K. Mitsube, K. Momose, and Y. Tomita, Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express1, 207–222 (2011). [CrossRef]
  34. E. Hata and Y. Tomita, “Stoichiometric thiol-to-ene ratio dependences of refractive index modulation and shrinkage of volume gratings recorded in photopolymerizable nanoparticle-polymer composites based onstepgrowth polymerization,” Opt. Mater. Express1, 1113–1120 (2011). [CrossRef]
  35. D. A. Waldman, H.-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol.41, 497–514 (1997).
  36. K. Momose, S. Takayama, E. Hata, and Y. Tomita, “Shift-multiplexed holographic digital data page storage in a nanoparticle-(thiol-ene) polymer composite film,” Opt. Lett.37, 2250–2252 (2012). [CrossRef] [PubMed]
  37. B.D. Fairbanks, E.A. Sims, K.S. Anseth, and C.N. Bowman, “Reaction rates and mechanisms for radical, photoinitiated addition of thiols to alkynes, and implications for thiol-yne photopolymerizations and click reactions,” Macromolecules43, 4113–4119 (2010). [CrossRef]
  38. J.W. Chan, J. Shin, C.E. Hoyle, C.N. Bowman, and A.B. Lowe, “Synthesis, thiol-yne “click” photo polymerization, and physical properties of networks derived from novel multifunctional alkynes,” Macromolecules43, 4937–4942 (2010). [CrossRef]
  39. L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer47, 4411–4420 (2006). [CrossRef]
  40. N.B. Cramer and C.N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. Part A: Poly. Chem.39, 3311–3319 (2001). [CrossRef]
  41. H. Takahashi, J. Yamauchi, and Y. Tomita, “Characterization of silica-nanoparticle-dispersed photopolymer films that include Poly(methyl methacrylate) as host binder material,” Jpn. J. Appl. Phys.44, L1008–L1010 (2005), [CrossRef]
  42. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947(1969). [CrossRef]
  43. L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73, 1337–1339 (1998). [CrossRef]
  44. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic Press, London, 1998).
  45. S. Campbell, S.-H. Lin, X. Yi, and P. Yeh, “Absorption effects in photorefractive volume-holographic memory systems. II. Material heating,” J. Opt. Soc. Am. B13, 2218–2228 (1996). [CrossRef]
  46. T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys.40, 1732–1736 (2001). [CrossRef]
  47. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express15, 16196–16209 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited