OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 6 — Jun. 1, 2014
  • pp: 1112–1127

Ultrahigh vacuum angle-dependent Faraday effect experiment on ultrathin magneto-optical materials

Chiung-Wu Su  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 6, pp. 1112-1127 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2089 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Determination of magnetic anisotropy on perpendicular and longitudinal fields in most magneto-optical materials is usually essential in magnetic measurements. However, 3D information is still insufficient and may be misled due to only two spin vectors. The vacuum magneto-optical Faraday effect measurement (the transmission mode of magneto-optics technique) in an ultrahigh vacuum system, a new concept for the reconstruction of 3D magnetic anisotropy is introduced. The Faraday rotation in the ultrathin (magnetic film)/(optical crystal) system exhibits a polar plane oscillation as a function of incidence angle. The crystal birefringence is responsible for causing the oscillation. The Faraday rotation, which consists of crystal optics and magneto-optics, originates from the crystal and the ultrathin film, respectively. Alternatively, we clarify a debate that the easy axis of the Co/ZnO(0001) film is only located at the plane. Through the observation of the angle-dependent coercivity, the magnetic easy axis in the proposed multilayer structure including double anisotropy is proposed.

© 2014 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3820) Materials : Magneto-optical materials
(230.2240) Optical devices : Faraday effect
(260.1440) Physical optics : Birefringence

ToC Category:
Magneto-optical Materials

Original Manuscript: March 20, 2014
Revised Manuscript: April 26, 2014
Manuscript Accepted: April 28, 2014
Published: May 2, 2014

Chiung-Wu Su, "Ultrahigh vacuum angle-dependent Faraday effect experiment on ultrathin magneto-optical materials," Opt. Mater. Express 4, 1112-1127 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Š. Višňovský, Optics in Magnetic Multilayers and Nanostructures (CRC/Taylor & Francis, 2006).
  2. W.-K. Tse and A. H. MacDonald, “Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators,” Phys. Rev. Lett.105(5), 057401 (2010). [CrossRef] [PubMed]
  3. W.-K. Tse and A. H. MacDonald, “Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized Hall systems,” Phys. Rev. B84(20), 205327 (2011). [CrossRef]
  4. J. Li, Z. Y. Wang, A. Tan, P. A. Glans, E. Arenholz, C. Hwang, J. Shi, and Z. Q. Qiu, “Magnetic dead layer at the interface between a Co film and the topological insulator Bi_{2}Se_{3},” Phys. Rev. B86(5), 054430 (2012). [CrossRef]
  5. Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the Spin Hall effect in semiconductors,” Science306(5703), 1910–1913 (2004). [CrossRef] [PubMed]
  6. S. Matsuzaka, Y. Ohno, and H. Ohno, “Scanning Kerr microscopy of the spin hall effect in n-doped GaAs with various doping concentration,” Journal of Superconductivity and Novel Magnetism23(1), 37–39 (2010). [CrossRef]
  7. B. A. Glushko and V. O. Chaltykyan, “Magnetic properties of a diamagnetic gas in a resonance radiation field,” Soviet Journal of Quantum Electronics12(11), 1388–1390 (1982). [CrossRef]
  8. G. Siva Ramaiah and Y. Pan, “Thermodynamic and magnetic properties of surface Fe3+ species on quartz: effects of gamma-ray irradiation and implications for aerosol–radiation interactions,” Phys. Chem. Miner.39(6), 515–523 (2012). [CrossRef]
  9. M. Faraday, Faraday's Diary, Begin from note #7504 (13 Sep 1845), 2nd ed. (HR Direct, 2008), Vol. IV.
  10. S. Kyle, C. Turhan, D. B. Joshua, V. Ilya, and A. A. Chabanov, “Enhanced transmission and giant Faraday effect in magnetic metal–dielectric photonic structures,” J. Phys. D Appl. Phys.46(16), 165002 (2013). [CrossRef]
  11. A. B. Khanikaev, A. B. Baryshev, P. B. Lim, H. Uchida, M. Inoue, A. G. Zhdanov, A. A. Fedyanin, A. I. Maydykovskiy, and O. A. Aktsipetrov, “Nonlinear Verdet law in magnetophotonic crystals: Interrelation between Faraday and Borrmann effects,” Phys. Rev. B78(19), 193102 (2008). [CrossRef]
  12. G. X. Du, S. Saito, and M. Takahashi, “Tailoring the Faraday effect by birefringence of two dimensional plasmonic nanorod array,” Appl. Phys. Lett.99(19), 191107 (2011). [CrossRef]
  13. N. B. Baranova, Y. V. Bogdanov, and B. Y. Zel’Dovich, “Electrical analog of the Faraday effect and other new optical effects in liquids,” Opt. Commun.22(2), 243–247 (1977). [CrossRef]
  14. T. S. Pennanen, S. Ikäläinen, P. Lantto, and J. Vaara, “Nuclear spin optical rotation and Faraday effect in gaseous and liquid water,” J. Chem. Phys.136(18), 184502 (2012). [CrossRef] [PubMed]
  15. R. Brunetton and J. Monin, “Highly efficient low field magneto-optic modulator,” J. Opt.17(4), 191–196 (1986). [CrossRef]
  16. B. Segard and J. M. Carpentier, “Millimetre polarisation spectrometer for paramagnetic gas molecules,” J. Phys. E Sci. Instrum.14(4), 442–447 (1981). [CrossRef]
  17. J. P. Woerdman, F. J. Blok, M. Kristensen, and C. A. Schrama, “Multiperturber effects in the Faraday spectrum of Rb atoms immersed in a high-density Xe gas,” Phys. Rev. A53(2), 1183–1186 (1996). [CrossRef] [PubMed]
  18. M. Kristensen, F. J. Blok, M. A. van Eijkelenborg, G. Nienhuis, and J. P. Woerdman, “Onset of a collisional modification of the Faraday effect in a high-density atomic gas,” Phys. Rev. A51(2), 1085–1096 (1995).
  19. M. O. Takada, Hiroshi, Sugiyama, and Naoshi, “Faraday Rotation Effect of Intracluster Magnetic Field on Cosmic Microwave Background Polarization,” arXiv:astro-ph/0112412 (2001).
  20. A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature435(7042), 655–657 (2005). [CrossRef] [PubMed]
  21. A. Kirilyuk, A. V. Kimel, and T. Rasing, “Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys,” Rep. Prog. Phys.76(2), 026501 (2013). [CrossRef] [PubMed]
  22. B. S. Chun, H.-H. Nahm, M. Abid, H.-C. Wu, Y.-S. Kim, I. C. Chu, and C. Hwang, “Positive exchange bias in thin film multilayers produced with nano-oxide layer,” Appl. Phys. Lett.102(25), 252406 (2013). [CrossRef]
  23. S. H. Chung, A. Hoffmann, and M. Grimsditch, “Interplay between exchange bias and uniaxial anisotropy in a ferromagnetic/antiferromagnetic exchange-coupled system,” Phys. Rev. B71(21), 214430 (2005). [CrossRef]
  24. Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol.8(6), 438–444 (2013). [CrossRef] [PubMed]
  25. E. Młyńczak, P. Luches, S. Valeri, and J. Korecki, “NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure,” J. Appl. Phys.113(23), 234315 (2013). [CrossRef]
  26. Y. A. Lisovskii, E. G. Knizhnik, V. L. Stolyarov, and L. K. Fionova, “The structure and magnetic properties of Co-Cr thin films for perpendicular recording,” Mater. Chem. Phys.44(3), 239–244 (1996). [CrossRef]
  27. W. M. Li, W. K. Lim, J. Z. Shi, and J. Ding, “The effect of capped layer thickness on switching behavior in perpendicular CoCrPt based coupled granular/continuous media,” J. Magn. Magn. Mater.340, 50–56 (2013). [CrossRef]
  28. D. Chiba, M. Kawaguchi, S. Fukami, N. Ishiwata, K. Shimamura, K. Kobayashi, and T. Ono, “Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization,” Nat Commun3, 888 (2012). [CrossRef] [PubMed]
  29. T. H. E. Lahtinen, K. J. A. Franke, and S. van Dijken, “Electric-field control of magnetic domain wall motion and local magnetization reversal,” Sci Rep2, 258 (2012). [CrossRef] [PubMed]
  30. X. Chen, X. Qian, K. Meng, J. Zhao, and Y. Ji, “The measurement of magneto-optical Kerr effect of ultrathin films in a pulsed magnetic field,” Measurement46(1), 52–56 (2013). [CrossRef]
  31. S. Pathak and M. Sharma, “Magneto-optical Kerr effect measurements on highly ordered nanomagnet arrays,” J. Appl. Phys.111(7), 07E331 (2012). [CrossRef]
  32. M. Ghanaatshoar and M. Moradi, “Magneto-optical Kerr-effect enhancement in glass/Cu/SnO2/Co/SnO2 thin films,” Opt. Eng.50(9), 093801 (2011). [CrossRef]
  33. Y. Halahovets, P. Siffalovic, M. Jergel, R. Senderak, E. Majkova, S. Luby, I. Kostic, B. Szymanski, and F. Stobiecki, “Scanning magneto-optical Kerr microscope with auto-balanced detection scheme,” Rev. Sci. Instrum.82(8), 083706 (2011). [CrossRef] [PubMed]
  34. X. Wang, J. Lian, G. T. Wang, P. Song, P. Li, and S. Gao, “Longitude magneto optical Kerr effect of Fe/GaAs (001) with Al overlayers,” J. Magn. Magn. Mater.323(22), 2711–2716 (2011). [CrossRef]
  35. J. M. Teixeira, R. Lusche, J. Ventura, R. Fermento, F. Carpinteiro, J. P. Araujo, J. B. Sousa, S. Cardoso, and P. P. Freitas, “Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials,” Rev. Sci. Instrum.82(4), 043902 (2011). [CrossRef] [PubMed]
  36. A. Barman, T. Kimura, Y. Otani, Y. Fukuma, K. Akahane, and S. Meguro, “Benchtop time-resolved magneto-optical Kerr magnetometer,” Rev. Sci. Instrum.79(12), 123905 (2008). [CrossRef] [PubMed]
  37. S. Polisetty, J. Scheffler, S. Sahoo, Y. Wang, T. Mukherjee, X. He, and Ch. Binek, “Optimization of magneto-optical Kerr setup: Analyzing experimental assemblies using Jones matrix formalism,” Rev. Sci. Instrum.79(5), 055107 (2008). [CrossRef] [PubMed]
  38. M. Cormier, J. Ferré, A. Mougin, J.-P. Cromières, and V. Klein, “High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics,” Rev. Sci. Instrum.79(3), 033706 (2008). [CrossRef] [PubMed]
  39. D. A. Allwood, P. R. Seem, S. Basu, P. W. Fry, U. J. Gibson, and R. P. Cowburn, “Over 40% transverse Kerr effect from Ni80Fe20,” Appl. Phys. Lett.92(7), 072503 (2008). [CrossRef]
  40. S. R. A. Bowden, K. K. L. Ahmed, and U. J. Gibson, “Longitudinal magneto-optic Kerr effect detection of latching vortex magnetization chirality in individual mesoscale rings,” Appl. Phys. Lett.91(23), 232505 (2007). [CrossRef]
  41. P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, “Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements,” J. Appl. Phys.100(9), 093910 (2006). [CrossRef]
  42. C. Nistor, G. S. D. Beach, and J. L. Erskine, “Versatile magneto-optic Kerr effect polarimeter for studies of domain-wall dynamics in magnetic nanostructures,” Rev. Sci. Instrum.77(10), 103901 (2006). [CrossRef]
  43. A. Westphalen, T. Schmitte, K. Westerholt, and H. Zabel, “Bragg magneto-optical Kerr effect measurements at Co stripe arrays on Fe(001),” J. Appl. Phys.97(7), 073909 (2005). [CrossRef]
  44. N. Mikuszeit, S. Pütter, R. Frömter, and H. P. Oepen, “Magneto-optic Kerr effect: Incorporating the nonlinearities of the analyzer into static photometric ellipsometry analysis,” J. Appl. Phys.97(10), 103107 (2005). [CrossRef]
  45. T. Mewes, H. Nembach, M. Rickart, and B. Hillebrands, “Separation of the first- and second-order contributions in magneto-optic Kerr effect magnetometry of epitaxial FeMn/NiFe bilayers,” J. Appl. Phys.95(10), 5324 (2004). [CrossRef]
  46. D. A. Allwood, X. Gang, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys.36(18), 2175–2182 (2003). [CrossRef]
  47. P. N. Argyres, “Theory of the Faraday and Kerr Effects in Ferromagnetics,” Phys. Rev.97(2), 334–345 (1955). [CrossRef]
  48. P. R. Bandaru, T. D. Sands, Y. Kubota, and E. E. Marinero, “Decoupling the structural and magnetic phase transformations in magneto-optic MnBi thin films by the partial substitution of Cr for Mn,” Appl. Phys. Lett.72(18), 2337–2339 (1998). [CrossRef]
  49. Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71(3), 1243–1255 (2000). [CrossRef]
  50. S. Wittekoek and D. E. Lacklison, “Investigation of the Origin of the Anomalous Faraday Rotation of BixCa3-xFe3.5+0.5 xV1.5-0.5xO12 by means of the magneto-optical Kerr effect,” Phys. Rev. Lett.28(12), 740–743 (1972). [CrossRef]
  51. J. Pommier, P. Meyer, G. Pénissard, J. Ferré, P. Bruno, and D. Renard, “Magnetization reversal in ultrathin ferromagnetic films with perpendicular anistropy: domain observations,” Phys. Rev. Lett.65(16), 2054–2057 (1990). [CrossRef] [PubMed]
  52. E. R. Moog, C. Liu, S. D. Bader, and J. Zak, “Thickness and polarization dependence of the magnetooptic signal from ultrathin ferromagnetic films,” Phys. Rev. B Condens. Matter39(10), 6949–6956 (1989). [CrossRef] [PubMed]
  53. S. Visnovsk, M. Nývlt, V. Prosser, R. Lopusník, R. Urban, J. Ferré, G. Pénissard, D. Renard, and R. Krishnan, “Polar magneto-optics in simple ultrathin-magnetic-film structures,” Phys. Rev. B Condens. Matter52(2), 1090–1106 (1995). [CrossRef] [PubMed]
  54. M. Kučera, P. Beránková, K. Nitsch, and M. Matyáš., “Low-temperature Faraday effect in charge-uncompensated garnet Ca:YIG,” J. Magn. Magn. Mater.157–158, 323–325 (1996). [CrossRef]
  55. J. Ostorero, H. Le Gall, M. Guillot, and A. Marchand, “Faraday effect in gadolinium iron garnet,” Magnetics, IEEE Transactions on22(5), 1242–1244 (1986). [CrossRef]
  56. N. Xiao-Jing and H. Min, “Faraday effect optical current/magnetic field sensors based on cerium-substituted yttrium iron garnet single crystal,” in Power and Energy Engineering Conference (APPEEC),2010Asia-Pacific, 2010), 1–4.
  57. E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc 1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett.99(1), 011111 (2011). [CrossRef]
  58. I. Mukhin, A. Voitovich, O. Palashov, and E. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun.282(10), 1969–1972 (2009). [CrossRef]
  59. M. I. Bakunov, R. V. Mikhaylovskiy, and S. B. Bodrov, “Probing ultrafast optomagnetism by terahertz Cherenkov radiation,” Phys. Rev. B86(13), 134405 (2012). [CrossRef]
  60. C. W. Su, S. C. Chang, and Y. C. Chang, “Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films,” AIP Advances3(7), 072125 (2013). [CrossRef]
  61. S. D. Bader, E. R. Moog, and P. Grünberg, “Magnetic hysteresis of epitaxially-deposited iron in the monolayer range: A Kerr effect experiment in surface magnetism,” J. Magn. Magn. Mater.53(4), L295–L298 (1986). [CrossRef]
  62. L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990). [CrossRef]
  63. J. S. Jiang, E. E. Fullerton, M. Grimsditch, C. H. Sowers, and S. D. Bader, “Exchange-spring behavior in epitaxial hard/soft magnetic bilayer films,” J. Appl. Phys.83(11), 6238 (1998). [CrossRef]
  64. D. Li, M. Freitag, J. Pearson, Z. Q. Qiu, and S. D. Bader, “Magnetic phases of ultrathin Fe grown on Cu(100) as epitaxial wedges,” Phys. Rev. Lett.72(19), 3112–3115 (1994). [CrossRef] [PubMed]
  65. C. Liu and S. D. Bader, “Two-dimensional magnetic phase transition of ultrathin iron films on Pd(100),” J. Appl. Phys.67(9), 5758–5760 (1990). [CrossRef]
  66. C. Liu, E. R. Moog, and S. D. Bader, “Polar Kerr-effect observation of perpendicular surface anisotropy for ultrathin fcc Fe Grown on Cu(100),” Phys. Rev. Lett.60(23), 2422–2425 (1988). [CrossRef] [PubMed]
  67. Z. Q. Qiu, J. Pearson, and S. D. Bader, “Oscillatory interlayer magnetic coupling of wedged Co/Cu/Co sandwiches grown on Cu(100) by molecular beam epitaxy,” Phys. Rev. B Condens. Matter46(13), 8659–8662 (1992). [CrossRef] [PubMed]
  68. R. W. Wang, D. L. Mills, E. E. Fullerton, J. E. Mattson, and S. D. Bader, “Surface spin-flop transition in Fe/Cr(211) superlattices: Experiment and theory,” Phys. Rev. Lett.72(6), 920–923 (1994). [CrossRef] [PubMed]
  69. J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Elementary formula for the magneto-optic Kerr effect from model superlattices,” Appl. Phys. Lett.58(11), 1214 (1991). [CrossRef]
  70. J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Magneto-optics of multilayers with arbitrary magnetization directions,” Phys. Rev. B Condens. Matter43(8), 6423–6429 (1991). [CrossRef] [PubMed]
  71. J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater.89(1-2), 107–123 (1990). [CrossRef]
  72. J. Ye, W. He, Q. Wu, H.-L. Liu, X.-Q. Zhang, Z.-Y. Chen, and Z.-H. Cheng, “Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance,” Sci Rep3, 2148 (2013). [CrossRef] [PubMed]
  73. T. V. Murzina, A. V. Shebarshin, A. I. Maidykovski, E. A. Ganshina, O. A. Aktsipetrov, N. N. Novitski, A. I. Stognij, and A. Stashkevich, “Linear and nonlinear magnetooptics of planar Au/Co/Si nanostructures,” Thin Solid Films517(20), 5918–5921 (2009). [CrossRef]
  74. D. Li, Encyclopedia of Microfluidics and Nanofluidics (Springer-Verlag, 2008).
  75. M. A. Reed, P. S. Krstic, W. Guan, and X. Zhao, “System and method for trapping and measuring a charged particle in a liquid,” US Patent US20110031389 A1 (2013).
  76. S. Maat, L. Shen, C. Hou, H. Fujiwara, and G. J. Mankey, “Optical interference in magneto-optic Kerr-effect measurements of magnetic multilayers,” J. Appl. Phys.85(3), 1658–1662 (1999). [CrossRef]
  77. C.-W. Su, Y.-C. Chang, and S.-C. Chang, “Magnetic phase transition in ion-irradiated ultrathin CoN films via magneto-optic Faraday effect,” Materials6(11), 5247–5257 (2013). [CrossRef]
  78. C. W. Su, S. C. Chang, and Y. C. Chang, “Magneto-optic faraday effect on spin anisotropic co ultrathin films and post-nitridization on sno(002) crystal,” SPIN02(04), 1250017 (2012). [CrossRef]
  79. Y.-C. Chang, C.-W. Su, S.-C. Chang, and Y.-H. Lee, “Variations of surface roughness for deposition of Co-sputtered-ZnO(002) by Auger electron spectroscopy and surface magneto-optic Faraday effect,” Eur. Phys. J. Appl. Phys.53, 21501 (2011).
  80. G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, 1994).
  81. C. W. Su, M. S. Huang, T. H. Tsai, and S. C. Chang, “Verification of surface polarity of O-face ZnO(0001) by quantitative modeling analysis of Auger electron spectroscopy,” Appl. Surf. Sci.263, 174–181 (2012). [CrossRef]
  82. J.-m. Liu, Photonic Devices (Cambridge University Press, 2005).
  83. V. G. Bordo and H.-G. Rubahn, Optics and Spectroscopy at Surfaces and Interfaces (Wiley-VCH, Weinheim 2005).
  84. J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, and R. Sporken, “Thermally Activated Processes at the Co/ZnO Interface Elucidated Using High Energy X-rays,” J. Phys. Chem. C115(15), 7411–7418 (2011). [CrossRef]
  85. S. H. Su, H.-H. Chen, T.-H. Lee, Y.-J. Hsu, and J. C. A. Huang, “Thermally Activated Interaction of Co Growth with ZnO(101̅0) Surface,” J. Phys. Chem. C117(34), 17540–17547 (2013). [CrossRef]
  86. P. W. M. Blom, J. J. L. Horikx, P. J. H. Bloemen, C. A. Verschuren, H. W. Van Kesteren, H. Awano, and N. Ohta, “Spatial resolution of domain copying in a magnetic domain expansion readout disk,” Magnetics, IEEE Transactions on37(5), 3860–3864 (2001). [CrossRef]
  87. G. P. Zhao and X. L. Wang, “Nucleation, pinning, and coercivity in magnetic nanosystems: An analytical micromagnetic approach,” Phys. Rev. B74(1), 012409 (2006). [CrossRef]
  88. C.-W. Su, Y.-C. Chang, T.-H. Tsai, S.-C. Chang, and M.-S. Huang, “Formation of CoNx ultra-thin films during direct-current nitrogen ion sputtering in ultrahigh vacuum,” Thin Solid Films519(11), 3739–3744 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited