OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 6 — Jun. 1, 2014
  • pp: 1128–1139

Incorporation of vanadium oxide films in optical fibers for temperature sensing and optical switching applications

Anuj Dhawan, Yashna Sharma, Leandra Brickson, and John F. Muth  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 6, pp. 1128-1139 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1718 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fiber optic temperature sensors were fabricated by depositing vanadium oxide thin films on the tips of optical fibers, and by incorporating vanadium oxide materials into the core of optical fibers. It was found that the properties of the initially amorphous vanadium oxide can be controllably converted to those of crystalline VOx compounds via the plasma arc of a fiber fusion splicer. These crystalline VOx compounds can then be over-coated with SiO2, and subsequently fused with another fiber to form an in-line fiber optic sensor. It was found that a well defined optical absorption edge was formed when the vanadium oxide (VOx) thin films were annealed using the plasma arc of a fusion splicer, suggesting the formation of crystalline VOx. Moreover, it was observed that the spectral position of this absorption edge varied with temperature in a reproducible way. The optical fiber devices described in this paper could also be employed for optical switching applications. Based on the spectral position of the band edge and the Raman spectra of the VOx films, deposited on the fiber optic tips, it was found that these annealed VOx films contained a mixture of different phases of vanadium oxide (VOx), in particular V2O5 and VO2. Furthermore, similar in-line optical fiber switches, based only on the insulator to metal phase transitions of VO2, can be fabricated by following the techniques described in this paper.

© 2014 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature
(160.0160) Materials : Materials
(240.0310) Optics at surfaces : Thin films
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(130.4815) Integrated optics : Optical switching devices
(250.6715) Optoelectronics : Switching

ToC Category:
Thin Films

Original Manuscript: January 31, 2014
Revised Manuscript: April 12, 2014
Manuscript Accepted: April 13, 2014
Published: May 5, 2014

Anuj Dhawan, Yashna Sharma, Leandra Brickson, and John F. Muth, "Incorporation of vanadium oxide films in optical fibers for temperature sensing and optical switching applications," Opt. Mater. Express 4, 1128-1139 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998). [CrossRef]
  2. G. C. M. Meijer, A. J. M. Boomkamp, and R. J. Duguesnoy, “An accurate biomedical temperature transducer with on-chip microcomputer interfacing,” IEEE J. Solid-State Circuits23(6), 1405–1410 (1988). [CrossRef]
  3. Y. Zhao and Y. Liao, “Compensation technology for a novel reflex optical fiber temperature sensor used under offshore oil well,” Opt. Commun.215(1–3), 11–16 (2003). [CrossRef]
  4. F. R. Riedijk and J. H. Huijsing, “An integrated absolute temperature sensor with sigma-delta A/D conversion,” Sens. Actuators A Phys.24, 249–256 (1996).
  5. R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998). [CrossRef]
  6. Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brandle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A Phys.103(3), 364–376 (2003). [CrossRef]
  7. A. D. Kersey and T. A. Berkoff, “Fiberoptic Bragg-grating differential-temperature sensor,” IEEE Photon. Technol. Lett.4(10), 1183–1185 (1992). [CrossRef]
  8. C. E. Lee, R. A. Atkins, and H. F. Taylor, “Performance of a fiber-optic temperature sensor from -200 to 1050 ° C,” Opt. Lett.13(11), 1038–1040 (1988). [CrossRef] [PubMed]
  9. C. E. Lee and H. F. Taylor, “Interferometric optical fibre sensors using internal mirrors,” Electron. Lett.24(4), 193–194 (1988). [CrossRef]
  10. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol.19(10), 1495–1501 (2001). [CrossRef]
  11. Z. Y. Huang, Y. Z. Zhu, and X. P. Chen, “Intrinsic fabry-perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett.17(11), 2403–2405 (2005). [CrossRef]
  12. Z. Zhang, K. T. V. Grattan, and A. W. Palmer, “A novel signal-processing scheme for a fluorescence based fiber optic temperature sensor,” Rev. Sci. Instrum.62(7), 1735–1742 (1991). [CrossRef]
  13. K. T. V. Grattan, A. W. Palmer, and Z. Zhang, “Development of a high-temperature fiber-optic thermometer probe using fluorescent decay,” Rev. Sci. Instrum.62(5), 1210–1213 (1991). [CrossRef]
  14. Y. Zhao, M. Rong, and Y. Liao, “Fiber-optic temperature sensor used for oil well based on semiconductor optical absorption,” IEEE Sens. J.3(4), 400–403 (2003). [CrossRef]
  15. Kyuma, T. Shuichi Tai, Sawada, and M. Nunoshita, “Fiber-optic instrument for temperature measurement,” IEEE J. Quantum Electron.18(4), 676–679 (1982). [CrossRef]
  16. C. E. Lee, R. A. Atkins, W. N. Gibler, and H. F. Taylor, “Fiber optic application for thermal switching in vanadium dioxide films,” Appl. Opt.28(21), 4511–4512 (1989). [CrossRef] [PubMed]
  17. A. Dhawan and J. F. Muth, “Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix,” Nanotechnology17(10), 2504–2511 (2006). [CrossRef] [PubMed]
  18. A. Dhawan and J. F. Muth, “In-line fiber optic structures for environmental sensing applications,” Opt. Lett.31(10), 1391–1393 (2006). [CrossRef] [PubMed]
  19. Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34(1), 149–154 (1967). [CrossRef]
  20. J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, 1971).
  21. S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci.252(15), 5512–5515 (2006). [CrossRef]
  22. P. Jin and S. Tanemura, “V1−xMoxO2 thermochromic films deposited by reactive magnetron sputtering,” Thin Solid Films281-282(1-2), 239–242 (1996). [CrossRef]
  23. H. Katzke, P. Toledano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B68(2), 024109 (2003). [CrossRef]
  24. X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci.177(1-2), 8–14 (2001). [CrossRef]
  25. Y. P. Zhang, C. J. O’Connor, A. Clearfield, and R. C. Haushalter, “An organically templated layered vanadium oxide: Hydrothermal synthesis, single-crystal structure, and magnetic properties of (H3N(CH2)(3)NH3)[V4O10],” Chem. Mater.8(3), 595–597 (1996). [CrossRef]
  26. D. P. Partlow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable vanadium-oxide films by a sol-gel process,” J. Appl. Phys.70(1), 443–452 (1991). [CrossRef]
  27. R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” Appl. Phys. Lett.92(7), 4031 (2002).
  28. D. H. Kim and H. S. Kwok, “Pulsed-laser deposition of VO2 thin-films,” Appl. Phys. Lett.65(25), 3188 (1994). [CrossRef]
  29. M. H. Lee and M. G. Kim, “RTA and stoichiometry effect on the thermochromism of VO2 thin films,” Thin Solid Films286(1), 219–222 (1996). [CrossRef]
  30. X. Chen and J. Dai, “Optical switch with low-phase transition temperature based on thin nanocrystalline VOx film,” Optik-International Journal for Light and Electron Optics121(16), 1529–1533 (2010). [CrossRef]
  31. E. Cavanna, J. P. Segaud, and J. Livage, “Optical switching of Au-doped VO2 sol-gel films,” Mater. Res. Bull.34(2), 167–177 (1999). [CrossRef]
  32. P. Singh and D. Kaur, “Influence of film thickness on texture and electrical and optical properties of room temperature deposited nanocrystalline V2O5 thin films,” J. Appl. Phys.103(4), 043507 (2008). [CrossRef]
  33. S. H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion.165(1), 111–116 (2003). [CrossRef]
  34. W. J. Shen, K. W. Sun, and C. S. Lee, “Electrical characterization and Raman spectroscopy of individual vanadium pentoxide nanowire,” J. Nanopart. Res.13(10), 4929–4936 (2011). [CrossRef]
  35. N. Das, H. Eckert, H. Hu, I. E. Wachs, J. F. Walzer, and F. J. Feher, “Bonding states of surface vanadium (V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy,” J. Phys. Chem.97(31), 8240–8243 (1993). [CrossRef]
  36. G. T. Went, S. T. Oyama, and A. T. Bell, “Laser Raman spectroscopy of supported vanadium oxide catalysts,” J. Phys. Chem.94(10), 4240–4246 (1990). [CrossRef]
  37. C. Piccirillo, R. Binions, and I. P. Parkin, “Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol‐assisted CVD,” Chem. Vap. Deposition.13(4), 145–151 (2007). [CrossRef]
  38. Q. Chen and P. Lu, “Fiber Bragg gratings and their applications as temperature and humidity sensors,” Atomic, Molecular, and Optical Physics, L. T. Chen ed. (Nova Science Publishers, 2008), pp. 235–260.
  39. C.-H. Lee, J. Lee, M.-K. Kim, and K. T. Kim, “Characteristics of a fiber Bragg grating temperature sensor using the thermal strain of an external tube,” J. Korean Phys. Soc.59(5), 3188–3191 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited