OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 6 — Jun. 1, 2014
  • pp: 1166–1171

Optical ridge waveguides in 4H-SiC single crystal produced by combination of carbon ion irradiation and femtosecond laser ablation

Qingfang Luan, Yuechen Jia, Yutian Wang, Shavkat Akhmadaliev, Shengqiang Zhou, Javier R. Vázquez de Aldana, Yang Tan, and Feng Chen  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 6, pp. 1166-1171 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical ridge waveguides were fabricated in 4H-SiC single crystal by combination of 15 MeV C5+ ion irradiation and femtosecond laser ablation. The near-field modal intensity distributions exhibit the well-confined light propagation in the waveguides. A propagation loss as low as 5.1 dB/cm has been achieved at 632.8 nm for the ridge waveguide. The investigation of confocal micro-Raman spectra suggests partial transition of 4H-SiC to 6H-SiC in the irradiated region.

© 2014 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.6000) Materials : Semiconductor materials
(230.7370) Optical devices : Waveguides

ToC Category:
Laser Materials Processing

Original Manuscript: March 13, 2014
Revised Manuscript: May 4, 2014
Manuscript Accepted: May 6, 2014
Published: May 12, 2014

Qingfang Luan, Yuechen Jia, Yutian Wang, Shavkat Akhmadaliev, Shengqiang Zhou, Javier R. Vázquez de Aldana, Yang Tan, and Feng Chen, "Optical ridge waveguides in 4H-SiC single crystal produced by combination of carbon ion irradiation and femtosecond laser ablation," Opt. Mater. Express 4, 1166-1171 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Trew, J.-B. Yan, and P. M. Mock, “The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications,” Proc. IEEE79(5), 598–620 (1991). [CrossRef]
  2. M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” IEEE Trans. Electron. Dev.40(3), 645–655 (1993). [CrossRef]
  3. Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express3(12), 122201 (2010). [CrossRef]
  4. K. Ito, S. Tsukimoto, and M. Murakami, “Effects of Al ion implantation to 4H-SiC on the specific contact resistance of TiAl-based contact materials,” Sci. Technol. Adv. Mater.7(6), 496–501 (2006). [CrossRef]
  5. S. Doǧan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett.82(18), 3107–3109 (2003). [CrossRef]
  6. R. S. Wei, S. Song, K. Yang, Y. X. Cui, Y. Peng, X. F. Chen, X. B. Hu, and X. G. Xu, “Thermal conductivity of 4H-SiC single crystals,” J. Appl. Phys.113(5), 053503 (2013). [CrossRef]
  7. L. Li, W. Hua, S. Prucnal, S. D. Yao, L. Shao, K. Potzger, and S. Q. Zhou, “Defect induced ferromagnetism in 4H-SiC single crystals,” Nucl. Instrum. Methods Phys. Res. B275, 33–36 (2012). [CrossRef]
  8. H. Y. Sun, S. C. Lien, Z. R. Qiu, H. C. Wang, T. Mei, C. W. Liu, and Z. C. Feng, “Temperature dependence of Raman scattering in bulk 4H-SiC with different carrier concentration,” Opt. Express21(22), 26475–26482 (2013). [CrossRef] [PubMed]
  9. S. C. Hong, M. J. Zhan, G. Wang, H. W. Xuan, W. Zhang, C. J. Liu, C. H. Xu, Y. Liu, Z. Y. Wei, and X. L. Chen, “4H-SiC: a new nonlinear material for mid infrared lasers,” Laser Photon. Rev.7(5), 831–838 (2013). [CrossRef]
  10. F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012). [CrossRef]
  11. G. Pandraud, E. Margallo-Balbas, C.-K. Yang, and P. J. French, “Experimental characterization of roughness induced scattering losses in PECVD SiC waveguides,” J. Lightwave Technol.29(5), 744–749 (2011). [CrossRef]
  12. G. Pandraud, P. J. French, and P. M. Sarro, “Experimental study of bent SiC optical waveguides,” Microw. Opt. Technol. Lett.47(3), 219–220 (2005). [CrossRef]
  13. S. Sorieul, X. Kerbiriou, J.-M. Costantini, L. Gosmain, G. Calas, and C. Trautmann, “Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation,” J. Phys. Condens. Matter24(12), 125801 (2012). [CrossRef] [PubMed]
  14. M. Ishimaru, R. M. Dickerson, and K. E. Sickafus, “High-dose oxygen ion implantation into 6H-SiC,” Appl. Phys. Lett.75(3), 352 (1999). [CrossRef]
  15. W. Wesch, A. Heft, R. Menzel, T. Bachmann, G. Peiter, H. Hobert, T. Höche, P. Dannberg, and A. Bräuer, “Ion beam processing of SiC for optical application,” Nucl. Instrum. Methods Phys. Res. B148(1–4), 545–550 (1999). [CrossRef]
  16. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev.8(2), 251–275 (2014). [CrossRef]
  17. R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys.100(11), 113121 (2006). [CrossRef]
  18. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1121 (2002). [CrossRef]
  19. C. Zhang, N. N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. M. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express19(13), 12503–12508 (2011). [CrossRef] [PubMed]
  20. J. F. Ziegler, computer code, SRIM http://www.srim.org .
  21. http://www.rsoftdesign.com .
  22. D. Yevick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett.17(5), 329–330 (1992). [CrossRef] [PubMed]
  23. Y. C. Yao, Y. Tan, N. N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express18(24), 24516–24521 (2010). [CrossRef] [PubMed]
  24. H. Y. Sun, F. He, Z. H. Zhou, Y. Cheng, Z. Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses,” Opt. Lett.32(11), 1536–1538 (2007). [CrossRef] [PubMed]
  25. A. Vonsovici, G. T. Reed, A. G. R. Evans, and F. Namavar, “Loss measurements for β-SiC-on insulator waveguides for high-speed silicon-based photonic devices,” Proc. SPIE3630, 115–124 (1999). [CrossRef]
  26. S. Sorieul, J.-M. Costantini, L. Gosmain, L. Thomé, and J.-J. Grob, “Raman spectroscopy study of heavy-ion-irradiated α-SiC,” J. Phys. Condens. Matter18(22), 5235–5251 (2006). [CrossRef]
  27. L. Li, S. Prucnal, S. D. Yao, K. Potzger, W. Anwand, A. Wagner, and S. Q. Zhou, “Rise and fall of defect induced ferromagnetism in SiC single crystals,” Appl. Phys. Lett.98(22), 222508 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited