OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 6 — Jun. 1, 2014
  • pp: 1172–1177

Temperature effect on lasing from Penrose photonic quasicrystal

D. Luo, Q. G. Du, H. T. Dai, X. H. Zhang, and X. W. Sun  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 6, pp. 1172-1177 (2014)
http://dx.doi.org/10.1364/OME.4.001172


View Full Text Article

Enhanced HTML    Acrobat PDF (1111 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Temperature effect on lasing from a Penrose photonic quasicrystal made of low index contrast materials holographic polymer dispersed liquid crystals was investigated. A blue-shift of lasing peak was observed with increased temperature in the range of 25 °C~50 °C. The transmission spectra of Penrose photonic quasicrystal was studied through FDTD simulation, which showed a correlation between the lasing peak and the transmission spectrum. The tunable property could be understood by the elliptical shape of liquid crystal droplets formed in the Penrose quasicrystal.

© 2014 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(160.3710) Materials : Liquid crystals

ToC Category:
Liquid Crystals

History
Original Manuscript: April 15, 2014
Revised Manuscript: May 9, 2014
Manuscript Accepted: May 9, 2014
Published: May 13, 2014

Citation
D. Luo, Q. G. Du, H. T. Dai, X. H. Zhang, and X. W. Sun, "Temperature effect on lasing from Penrose photonic quasicrystal," Opt. Mater. Express 4, 1172-1177 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-6-1172


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci.30(1), 83–115 (2000). [CrossRef]
  2. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express10(20), 1074–1082 (2002). [CrossRef] [PubMed]
  3. S. P. Gorkhali, J. Qi, and G. P. Crawford, “Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries,” J. Opt. Soc. Am. B23(1), 149–158 (2006). [CrossRef]
  4. K. Sakoda, “Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,” Opt. Express4(5), 167–176 (1999). [CrossRef] [PubMed]
  5. R. Jakubiak, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. Lloyd, T. J. Bunning, and R. A. Vaia, “Dynamic lasing from all-organic two-dimensional photonic crystals,” Adv. Mater.17(23), 2807–2811 (2005). [CrossRef]
  6. D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett.95(15), 151115 (2009). [CrossRef]
  7. M. S. Li, A. Y. Fuh, and S. T. Wu, “Multimode lasing from the microcavity of an octagonal quasi-crystal based on holographic polymer-dispersed liquid crystals,” Opt. Lett.37(15), 3249–3251 (2012). [CrossRef] [PubMed]
  8. H. J. Coles and S. M. Morris, “Liquid-crystal lasers,” Nat. Photonics4(10), 676–685 (2010). [CrossRef]
  9. W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater.1(2), 111–113 (2002). [CrossRef] [PubMed]
  10. D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Ji, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals,” Sci Rep2, 627 (2012). [CrossRef] [PubMed]
  11. D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett.84(6), 837–839 (2004). [CrossRef]
  12. D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, “Compact lasers based on HPDLC gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)441(1), 97–109 (2005). [CrossRef]
  13. R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett.85(25), 6095–6097 (2004). [CrossRef]
  14. V. K. S. Hsiao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express13(10), 3787–3794 (2005). [CrossRef] [PubMed]
  15. Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Effect of liquid crystal concentration on the lasing properties of dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett.90(1), 011109 (2007). [CrossRef]
  16. D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett.97(8), 081101 (2010). [CrossRef]
  17. D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys.108(1), 013106 (2010). [CrossRef]
  18. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express12(24), 5857–5871 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited