OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 6 — Jun. 1, 2014
  • pp: 1178–1185

Structural and optical characteristics of Ge1−xSn x /Ge superlattices grown on Ge-buffered Si(001) wafers

Jia-Zhi Chen, H. Li, H. H. Cheng, and Guo-En Chang  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 6, pp. 1178-1185 (2014)
http://dx.doi.org/10.1364/OME.4.001178


View Full Text Article

Enhanced HTML    Acrobat PDF (1388 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an investigation on low dimensional Ge1−xSn x /Ge heterostructures. A series of strained-layer Ge1−xSn x /Ge superlattices with various Sn contents up to a threshold value that affords a direct bandgap is achieved by the technique of low temperature growth using molecular beam epitaxy. The Sn composition, strain status, and crystallographic are systematically characterized by cross-sectional transmission electron microscope and x-ray diffraction. Optical absorption measurements were carried out at room temperature to determine the bandgap energies of the Ge1−xSn x /Ge superlattices. Analyzing the direct transition energies reveals the room-temperature quantum confinement in the Ge1−xSn x /Ge superlattices. Present investigation demonstrates the growth and the quantum confinement of Ge1−xSn x /Ge superlattices, moving an important step forward toward the development of high-performance photonic devices based on Sn-containing group-IV low-dimensional structures.

© 2014 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(300.1030) Spectroscopy : Absorption

ToC Category:
Semiconductors

History
Original Manuscript: March 20, 2014
Revised Manuscript: May 6, 2014
Manuscript Accepted: May 6, 2014
Published: May 14, 2014

Citation
Jia-Zhi Chen, H. Li, H. H. Cheng, and Guo-En Chang, "Structural and optical characteristics of Ge1−xSnx/Ge superlattices grown on Ge-buffered Si(001) wafers," Opt. Mater. Express 4, 1178-1185 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-6-1178


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. He and H. A. Atwater, “Interband transitions in Sn1−xGex alloys,” Phys. Rev. Lett.79, 1937–1940 (1997). [CrossRef]
  2. V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B73, 125207 (2006). [CrossRef]
  3. R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1−ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98, 061109 (2011). [CrossRef]
  4. H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett.100, 102109 (2012). [CrossRef]
  5. A. Gassenq, F. Gencarelli, J. V. Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express20, 27297–27303 (2012). [CrossRef] [PubMed]
  6. J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett.95, 133506 (2009). [CrossRef]
  7. M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4 % Sn,” Appl. Phys. Lett.101, 141110 (2012). [CrossRef]
  8. H. H. Tseng, K. Y. Wu, H. Li, V. Mashanov, H. H. Cheng, G. Sun, and R. A. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett.102, 182106 (2013). [CrossRef]
  9. G.-E. Chang, S.-W. Chang, and S.-L. Chuang, “Strain-balanced Ge1−zSnz/Si1−x−yGexSny multiple-quantum-well lasers,” IEEE J. Quantum Electron., 46, 1813–1820 (2010). [CrossRef]
  10. G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser,” J. Appl. Phys.108, 033107 (2010). [CrossRef]
  11. O. Gurdal, M. Hasan, M. R. Sardela, J. E. Greene, H. H. Radamson, J. E. Sundgren, and G. V. Hansson, “Growth of metastable Ge1−xSnx strained layer superlattices on Ge(001)2×1 by temperature-modulated molecular beam epitaxy,” Appl. Phys. Lett.67, 956–958 (1995). [CrossRef]
  12. A. Tonkikh, C. Eisenschmidt, V. Talalaev, N. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing,” Appl. Phys. Lett.103, 032106 (2013). [CrossRef]
  13. I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. Mashanov, A. Nikiforov, O. Pchelyakov, and X. S. Wu, “Investigation of Ge1−xSnx/Ge with high Sn composition grown at low-temperature,” AIP Advances1, 042118 (2011). [CrossRef]
  14. E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films520, 3195– 3200 (2012). [CrossRef]
  15. H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett.102, 251907 (2013). [CrossRef]
  16. R. Beeler, R. Roucka, A. V. G. Chizmeshya, J. Kouvetakis, and J. Menéndez, “Nonlinear structure-composition relationships in the Ge1−ySny/Si(100) (y< 0.15) system,” Phys. Rev. B84, 035204 (2011). [CrossRef]
  17. J. Tauc, Optical Properties of Solids (North Holland, 1969).
  18. G. E. Chang, W. Y. Hsieh, J. Z. Chen, and H. H. Cheng, “Quantum-confined photoluminescence from Ge1−xSnx/Ge superlattices on Ge-buffered Si(001) substrates,” Opt. Lett.38, 3485–3487 (2013). [CrossRef] [PubMed]
  19. H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett.98, 101106 (2011). [CrossRef]
  20. J. P. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn hetero-junction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett.102, 251117 (2013). [CrossRef]
  21. S. L. Chuang, Physics of Photonic Devices (Wiley, New York, 2009), 2nd edition
  22. S.-W. Chang and S.-L. Chuang, “Theory of optical gain of Ge-SixGey Sn1−x−y quantum-well lasers,” IEEE J. Quantum Electron.43, 249–256 (2007). [CrossRef]
  23. V. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menendez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films518, 2531–2537 (2010). [CrossRef]
  24. P. Moontragoon, R. A. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys.112, 073106 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited