OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 6 — Jun. 1, 2014
  • pp: 1197–1206

Waveguide fabrication in lithium-niobo-phosphate glasses by high repetition rate femtosecond laser: route to non-equilibrium material’s states

Mykhaylo Dubov, Vladimir Mezentsev, Alina A. Manshina, Ivan A. Sokolov, Alexey V. Povolotskiy, and Yuri V. Petrov  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 6, pp. 1197-1206 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3372 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study waveguide fabrication in lithium-niobo-phosphate glass, aiming at a practical method of single-stage fabrication of nonlinear integrated-optics devices. We observed chemical transformations or material redistribution during the course of high repetition rate femtosecond laser inscription. We believe that the laser-induced ultrafast heating and cooling followed by elements diffusion on a microscopic scale opens the way toward the engineering non-equilibrium sates of matter and thus can further enhance Refractive Index (RI) contrasts by virtue of changing glass composition in and around the fs tracks.

© 2014 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Laser Materials Processing

Original Manuscript: March 3, 2014
Revised Manuscript: April 26, 2014
Manuscript Accepted: May 6, 2014
Published: May 16, 2014

Mykhaylo Dubov, Vladimir Mezentsev, Alina A. Manshina, Ivan A. Sokolov, Alexey V. Povolotskiy, and Yuri V. Petrov, "Waveguide fabrication in lithium-niobo-phosphate glasses by high repetition rate femtosecond laser: route to non-equilibrium material’s states," Opt. Mater. Express 4, 1197-1206 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Misawa, S. Juodkazis, eds., 3D Laser Microfabrication. Principles and Applications (Wiley-VCH, Weinheim, 2006). [CrossRef]
  2. R. Osellame, G. Cerullo, R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, SpringerLink : Bücher (SpringerBerlin Heidelberg, 2012). [CrossRef]
  3. V. Mezentsev, J. Petrovic, M. Dubov, I. Bennion, J. Dreher, H. Schmitz, R. Grauer, “Femtosecond laser microfabrication of subwavelength structures in photonics,” Proc. SPIE 6459, 64590B (2007). [CrossRef]
  4. A. V. Turchin, M. Dubov, J. A. R. Williams, “In situ measurement and reconstruction in three dimensions of femtosecond inscription-induced complex permittivity modification in glass,” Opt. Lett. 35, 2952–2954 (2010). [CrossRef] [PubMed]
  5. A. V. Turchin, M. Dubov, J. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser microfabrication,” Optical and Quantum Electronics 42, 873–886 (2011). [CrossRef]
  6. V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, S. Juodkazis, “Formation of amorphous sapphire by a femtosecond laser pulse induced micro-explosion,” Applied Surface Science 255, 9745–9749 (2009). [CrossRef]
  7. L. B. Glebov, V. I. Smirnov, C. M. Stickley, I. V. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101–109 (2002). [CrossRef]
  8. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008). [CrossRef] [PubMed]
  9. S. M. Eaton, M. L. Ng, J. Bonse, A. Mermillod-Blondin, H. Zhang, A. Rosenfeld, P. R. Herman, “Low-loss waveguides fabricated in BK7 glass by high repetition rate femtosecond fiber laser,” Appl. Opt. 47, 2098–2102 (2008). [CrossRef] [PubMed]
  10. T. Allsop, M. Dubov, V. Mezentsev, I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800 nm,” Appl. Opt. 49, 1938–1950 (2010). [CrossRef] [PubMed]
  11. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15, 16800–16807 (2007). [CrossRef] [PubMed]
  12. A. Pasquarello, R. Car, “Identification of Raman defect lines as signatures of ring structures in vitreous silica,” Physical Review Letters 80, 5145–5147 (1998). [CrossRef]
  13. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” Journal of Applied Physics 108, 033110 (2010). [CrossRef]
  14. S. Gross, D.G. Lancaster, H. Ebendorff-Heidepriem, T.M. Monro, A. Fuerbach, M.J. Withford, “Femtosecond laser induced structural changes in fluorozirconate glass,” Opt. Mater. Express 3, 574–583 (2013). [CrossRef]
  15. I. Sokolov, Y. Tarlakov, N. Ustinov, N. Valova, A. Pronkin, “Influence of the nature of an alkali cation on the electrical conductivity of vitreous MePO3 (Me = Li, Na, or K),” Glass Physics and Chemistry 29, 305–309 (2003). [CrossRef]
  16. A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic Press Inc., 1994).
  17. C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, V. M. N. Passaro, “Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids,” Journal of Applied Physics 73, 3125–3132 (1993). [CrossRef]
  18. A. Fernandez, T. Fuji, A. Poppe, A. Frbach, F. Krausz, A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 291366–1368 (2004). [CrossRef] [PubMed]
  19. R. Graf, A. Fernandez, M. Dubov, H. Brueckner, B. Chichkov, A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Applied Physics B: Lasers and Optics 87, 21–27 (2007). [CrossRef]
  20. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, “Ultrashort-pulse laser calligraphy,” Applied Physics Letters 93, 171109 (2008). [CrossRef]
  21. J. Goldstein, Scanning Electron Microscopy and X-Ray Microanalysis (Springer London, Limited, 2003). [CrossRef]
  22. D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin, “CASINO v 2.42a. A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning 29, 92–101 (2007). [CrossRef] [PubMed]
  23. T. Uchino, T. Yoko, “Structure and vibrational properties of alkali phosphate glasses from ab initio molecular orbital calculations,” Journal of Non-Crystalline Solids 263–264, 180–188 (2000). [CrossRef]
  24. E. Kartini, T. Y. S. P. Putra, I. Kuntoro, T. Sakuma, K. Basar, O. Kamishima, J. Kawamura, “Recent studies on lithium solid electrolytes (LiI)x(LiPO3)1−x for secondary battery,” Journal of the Physical Society of Japan 79SA, 54–58 (2010). [CrossRef]
  25. J. Li, Z. Sun, X. Zhu, H. Zeng, Z. Xu, Z. Wang, J. Lin, W. Huang, R. S. Armstrong, P. A. Lay, “Optical bistability for ZnO-Nb2O5-TeO2 glasses,” Optical Materials 25, 401–405 (2004). [CrossRef]
  26. N. K. Mohan, M. R. Reddy, C. Jayasankar, N. Veeraiah, “Spectroscopic and dielectric studies on MnO doped PbO-Nb2O5-P2O5 glass system,” Journal of Alloys and Compounds 458, 66–76 (2008). [CrossRef]
  27. I. Mazali, L. Barbosa, O. Alves, “Preparation and characterization of new niobophosphate glasses in the Li2O-Nb2O5-CaO-P2O5 system,” Journal of Materials Science 39, 1987–1995 (2004). [CrossRef]
  28. R. R. Rakhimov, V. J. Turney, D. E. Jones, S. N. Dobryakov, Y. A. Borisov, A. I. Prokofev, A. I. Aleksandrov, “Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithiumniobium phosphate glasses,” The Journal of Chemical Physics 118, 6017–6021 (2003). [CrossRef]
  29. F. Cotton, G. Wilkinson, Advanced Inorganic Chemistry (Wiley, New York, 1999).
  30. S. C. Abrahams, P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallographica Section B 42, 61–68 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited