OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 6 — Jun. 1, 2014
  • pp: 1236–1242

Quasi-omnidirectional total light absorption in nanostructured gold surfaces

Hanbin Zheng, Renaud Vallée, Rui M. Almeida, Thomas Rivera, and Serge Ravaine  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 6, pp. 1236-1242 (2014)
http://dx.doi.org/10.1364/OME.4.001236


View Full Text Article

Enhanced HTML    Acrobat PDF (1981 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Theoretical calculations have predicted the possibility of omnidirectional absorption on a metallic surface with a closed packed layer of voids/spheres buried just beneath the surface. We have carried out a series of experiments to verify the existence of this theoretically predicted phenomenon. We report the observation of quasi omnidirectional total absorption of light on our fabricated surfaces and the tunability of the absorption wavelength by varying the size of the spheres/pores. The strongly enhanced absorption is observed for angles of incidence up to 65°.

© 2014 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(160.4670) Materials : Optical materials
(310.3915) Thin films : Metallic, opaque, and absorbing coatings

ToC Category:
Plasmonic Materials

History
Original Manuscript: April 15, 2014
Manuscript Accepted: May 12, 2014
Published: May 28, 2014

Citation
Hanbin Zheng, Renaud Vallée, Rui M. Almeida, Thomas Rivera, and Serge Ravaine, "Quasi-omnidirectional total light absorption in nanostructured gold surfaces," Opt. Mater. Express 4, 1236-1242 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-6-1236


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun.19(3), 431–436 (1976). [CrossRef]
  2. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004). [CrossRef]
  3. N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express16(20), 15431–15438 (2008). [CrossRef] [PubMed]
  4. T. Teperik, V. Popov, and F. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B71(8), 085408 (2005). [CrossRef]
  5. T. V. Teperik, V. V. Popov, F. J. García de Abajo, M. Abdelsalam, P. N. Bartlett, T. A. Kelf, Y. Sugawara, and J. J. Baumberg, “Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons,” Opt. Express14(5), 1965–1972 (2006). [CrossRef] [PubMed]
  6. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008). [CrossRef]
  7. N. Bonod and E. Popov, “Total light absorption in a wide range of incidence by nanostructured metals without plasmons,” Opt. Lett.33(20), 2398–2400 (2008). [CrossRef] [PubMed]
  8. M. Heim, S. Reculusa, S. Ravaine, and A. Kuhn, “Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures,” Adv. Funct. Mater.22(3), 538–545 (2012). [CrossRef]
  9. S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater.21(4), 691–698 (2011). [CrossRef]
  10. A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012). [CrossRef]
  11. N. Vogel, S. Goerres, K. Landfester, and C. K. Weiss, “A convenient method to produce close- and non-close-packed monolayers using direct assembly at the air–water interface and subsequent plasma-induced size reduction,” Macromol. Chem. Phys.212(16), 1719–1734 (2011). [CrossRef]
  12. A. Taflove, A. Oskooi, and S. G. Johnson, Advances in FDTD Computational Electrodynamics - Photonics and Nanotechnology (Artech House, 2013).
  13. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited