OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 7 — Jul. 1, 2014
  • pp: 1373–1382

Optical properties of serrated GaN nanowires

Anuradha Patra, Zheng Ma, Latika Menon, and Achanta Venu Gopal  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 7, pp. 1373-1382 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2304 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



GaN nanowires with periodic serrated morphology have been synthesized on Si substrate by Au-catalyzed vapor-liquid-solid growth mode. The presence of Mn vapor during growth process has been found to enhance the production and quality of serrated GaN nanowires, without introducing dopants. We have performed photoluminescence and Raman spectral measurements on nanowires with different levels of serration. Temperature dependent photoluminescence revealed a broad yellow-green and red luminescence in the samples. Room temperature Raman spectra exhibits disorder-activated phonon mode at ~670 cm−1, in addition to E2(high) and A1(LO) modes of GaN. Further investigation of Raman spectra revealed the presence of tensile stress in the GaN nanowires when Mn vapor is present during the growth process. The dependence of the optical properties on the morphology of GaN nanowires shows that they can be tuned by initial synthesis conditions.

© 2014 Optical Society of America

OCIS Codes
(000.0000) General : General
(160.0160) Materials : Materials
(160.4760) Materials : Optical properties
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: May 1, 2014
Revised Manuscript: June 11, 2014
Manuscript Accepted: June 11, 2014
Published: June 13, 2014

Anuradha Patra, Zheng Ma, Latika Menon, and Achanta Venu Gopal, "Optical properties of serrated GaN nanowires," Opt. Mater. Express 4, 1373-1382 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Fasol, “Room-Temperature blue gallium nitride laser diode,” Science272(5269), 1751–1752 (1996). [CrossRef]
  2. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science281(5379), 956–961 (1998). [CrossRef] [PubMed]
  3. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature406(6798), 865–868 (2000). [CrossRef] [PubMed]
  4. M. Zhang and J. J. Shi, “Exciton states and optical transitions in InGaN/GaN quantum dot nanowire heterostructures: strong built-in electric field and dielectric mismatch effects,” J. Lumin.131(9), 1908–1912 (2011). [CrossRef]
  5. H. Morkoc, Nitride Semiconductors and Devices (Springer, 1999).
  6. B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B10(2), 676–681 (1974). [CrossRef]
  7. H. Ohno, H. Munekata, T. Penney, L. L. Chang, and L. L. Chang,“Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors,” Phys. Rev. Lett.68(17), 2664–2667 (1992). [CrossRef] [PubMed]
  8. H. Ohno, A. Shen, F. Matsukara, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs,” Appl. Phys. Lett.69(3), 363–365 (1996). [CrossRef]
  9. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science287(5455), 1019–1022 (2000). [CrossRef] [PubMed]
  10. M. L. Reed, M. K. Ritums, H. H. Stadelmaier, M. J. Reed, C. A. Parker, S. M. Bedair, and N. A. El-Marsy, “Room temperature magnetic (Ga,Mn)N: a new material for spin electronic devices,” Mater. Lett.51(6), 500–503 (2001). [CrossRef]
  11. S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004). [CrossRef]
  12. M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulon, K. T. McCarthy, and A. F. Hebard, “Indication of ferromagnetism in molecular-beam-epitaxy-derived n-type GaMnN,” Appl. Phys. Lett.79(9), 1312–1314 (2001). [CrossRef]
  13. G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002). [CrossRef]
  14. Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett.6(7), 1468–1473 (2006). [CrossRef] [PubMed]
  15. Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett.9(5), 2183–2187 (2009). [CrossRef] [PubMed]
  16. Y. Huang, D. Xiangfeng, C. Yi, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett.2(2), 101–104 (2002). [CrossRef]
  17. Z. Ma, D. McDowell, E. Panaitescu, A. V. Davydov, M. Upmanya, and L. Menon, “Vapor-liquid-solid growth of serrated GaN nanowires: shape selection driven by kinetic frustration,” J. Mater. Chem. C1(44), 7294–7302 (2013). [CrossRef]
  18. Z. Ma, (2013) Synthesis, properties and applications of GaN nanowires (Doctoral Dissertation).
  19. M. A. Reshchikov and H. Morkoc, “Luminescence properties of defects in GaN,” J. Appl. Phys.97(6), 061301 (2005). [CrossRef]
  20. M. A. Reshchikov and R. Y. Korotkov, “Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films,” Phys. Rev. B64(11), 115205 (2001). [CrossRef]
  21. T. Ogino and M. Aoki, “Mechanism of yellow luminescence in GaN,” Jpn. J. Appl. Phys.19(12), 2395–2405 (1980). [CrossRef]
  22. T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN,” Phys. Rev. B55(15), 9571–9576 (1997). [CrossRef]
  23. M. A. Reshchikov, H. Morkoc, S. S. Park, and K. Y. Lee, “Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study,” Appl. Phys. Lett.81(26), 4970–4972 (2002). [CrossRef]
  24. C. Díaz-Guerra, J. Piqueras, and A. Cavallini, “Time-resolved cathodoluminescence assessment of deep-level transitions in hydride-vapor-phase-epitaxy GaN,” Appl. Phys. Lett.82(13), 2050–2052 (2003). [CrossRef]
  25. M. Cardona and G. Guntherodt, Light Scattering in Solids II (Springer Verlag Berlin, 1982).
  26. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc.123(12), 2791–2798 (2001). [CrossRef] [PubMed]
  27. W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko, and S. Podsiado, “Raman scattering study of Ga1-x MnxN crystals,” Appl. Phys. Lett.76(26), 3870–3872 (2000). [CrossRef]
  28. H. Harima, “Raman studies on spintronics materials based on wide bandgap semiconductors,” J. Phys. Condens. Matter16(48), S5653–S5660 (2004). [CrossRef]
  29. N. Hasuike, H. Fakamura, H. Harima, K. Kisoda, M. Hashimoto, Y. K. Zhou, and H. Asahi, “Optical studies on GaN-based spintronics materials,” J. Phys. Condens. Matter16(48), S5811–S5814 (2004). [CrossRef]
  30. X. Yang, J. Wu, Z. Chen, Y. Pan, Y. Zhang, Z. Yang, T. Yu, and G. Zhang, “Raman scattering and ferromagnetism of (Ga,Mn)N films grown by MOCVD,” Solid State Commun.143(4-5), 236–239 (2007). [CrossRef]
  31. P. Perlin, C. Jauberthie-Carillon, J. P. Itie, I. Grzegory, A. Polian, and A. Polian, “Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure,” Phys. Rev. B Condens. Matter45(1), 83–89 (1992). [CrossRef] [PubMed]
  32. Book of ASM Handbook, Volume 3, Alloy Phase Diagrams, 1992.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited