OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 7 — Jul. 1, 2014
  • pp: 1420–1426

Highly transparent Nd3+:Lu2O3 produced by spark plasma sintering and its laser oscillation

Liqiong An, Akihiko Ito, Jian Zhang, Dingyuan Tang, and Takashi Goto  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 7, pp. 1420-1426 (2014)
http://dx.doi.org/10.1364/OME.4.001420


View Full Text Article

Enhanced HTML    Acrobat PDF (3315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser oscillation was demonstrated using a 1 at.% Nd3+-doped Lu2O3 (Nd3+:Lu2O3) transparent ceramic produced by spark plasma sintering. Nd2O3, Lu2O3, and LiF commercial powders were mixed by ball milling and were sintered at 1723 K using a two-step sintering profile. After the transparent Nd3+:Lu2O3 ceramic was annealed in air, its transmittance at 1076 nm reached 81.8%, which was close to the theoretical value for Lu2O3 (82.2%). The absorption cross-section at 806 nm was 1.29 × 10−20 cm2, and the fluorescence decay time at 1076 nm was 229 μs. The laser oscillation of Nd3+:Lu2O3 ceramic for the transition from 4F3/2 to 4I11/2—specifically, at 1076.7 and 1080.8 nm—was simultaneously obtained, with a laser output of 0.21 W and slope efficiency of 14%.

© 2014 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3530) Lasers and laser optics : Lasers, neodymium
(160.3380) Materials : Laser materials

ToC Category:
Laser Materials

History
Original Manuscript: March 14, 2014
Revised Manuscript: June 4, 2014
Manuscript Accepted: June 5, 2014
Published: June 23, 2014

Citation
Liqiong An, Akihiko Ito, Jian Zhang, Dingyuan Tang, and Takashi Goto, "Highly transparent Nd3+:Lu2O3 produced by spark plasma sintering and its laser oscillation," Opt. Mater. Express 4, 1420-1426 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-7-1420


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995). [CrossRef]
  2. L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol.34(2), 255–260 (1999). [CrossRef]
  3. U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express12(14), 3125–3130 (2004). [CrossRef] [PubMed]
  4. J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett.81(23), 4324–4326 (2002). [CrossRef]
  5. K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics- a novel gain material for high-power solid-state lasers,” Phys. Status Solidi202(1), R1–R3 (2005). [CrossRef]
  6. A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characteriazation of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett.3(8), 375–379 (2006). [CrossRef]
  7. M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express14(26), 12832–12838 (2006). [CrossRef] [PubMed]
  8. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett.33(12), 1380–1382 (2008). [CrossRef] [PubMed]
  9. J. Sanghera, J. Frantz, W. Kim, G. Villalobos, C. Baker, B. Shaw, B. Sadowski, M. Hunt, F. Miklos, A. Lutz, and I. Aggarwal, “10% Yb3+-Lu2O3 ceramic laser with 74% efficiency,” Opt. Lett.36(4), 576–578 (2011). [CrossRef] [PubMed]
  10. W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011). [CrossRef]
  11. W. Kim, C. Baker, S. Bowman, C. Florea, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Laser oscillation from Ho3+ doped Lu2O3 ceramics,” Opt. Mater. Express3(7), 913–919 (2013). [CrossRef]
  12. O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express2(2), 183–189 (2012). [CrossRef]
  13. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express20(17), 19349–19354 (2012). [CrossRef] [PubMed]
  14. A. A. Kaminskii, “Laser crystal and ceramics: recent advances,” Laser Photon. Rev.1(2), 93–177 (2007). [CrossRef]
  15. L. Hao, K. Wu, H. Cong, H. Yu, H. Zhang, Z. Wang, and J. Wang, “Spectroscopy and laser performance of Nd:Lu2O3 crystal,” Opt. Express19(18), 17774–17779 (2011). [CrossRef] [PubMed]
  16. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011). [CrossRef] [PubMed]
  17. T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics,” Opt. Mater. Express1(5), 1040–1050 (2011). [CrossRef]
  18. R. Chaim, Z. Shen, and M. Nygren, “Transparent nanocrystalline MgO by rapid and low temperature spark plasma sintering,” J. Mater. Res.19(9), 2527–2531 (2004). [CrossRef]
  19. L. An, A. Ito, and T. Goto, “Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering,” J. Eur. Ceram. Soc.31(9), 1597–1602 (2011). [CrossRef]
  20. R. Boulesteix, R. Epherre, S. Noyau, M. Vandenhende, A. Maître, C. Sallé, G. Alombert-Goget, Y. Guyot, and A. Brenier, “Highly transparent Nd:Lu2O3 cermaics obtained by coupling slip-casting and spark plasma sintering,” Scr. Mater.75, 54–57 (2014). [CrossRef]
  21. L. An, A. Ito, and T. Goto, “Effect of LiF addition on spark plasma sintering of transparent Nd-doped Lu2O3 bodies,” J. Asian Ceram. Soc.2(2), 154–157 (2014). [CrossRef]
  22. M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc.52(8), 443–446 (1969). [CrossRef]
  23. A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008). [CrossRef]
  24. L. An, A. Ito, and T. Goto, “Effects of ball milling and post-annealing on the transparency of spark plasma sintered Lu2O3,” Ceram. Int.37(7), 2263–2267 (2011). [CrossRef]
  25. D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 Produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008). [CrossRef]
  26. U. Anselmi-Tamburini, J. Woolman, and Z. Munir, “Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering,” Adv. Funct. Mater.17(16), 3267–3273 (2007). [CrossRef]
  27. L. D. Merkle, M. Dubinskii, K. L. Schepler, and S. M. Hegde, “Concentration quenching in fine-grained ceramic Nd:YAG,” Opt. Express14(9), 3893–3905 (2006). [CrossRef] [PubMed]
  28. M. Pokhrel, N. Ray, G. A. Kumar, and D. K. Sardar, “Comparative studies of the spectroscopic properties of Nd3+: YAG nanocrystals, transparent ceramic and single crystal,” Opt. Mater. Express2(3), 235–249 (2012). [CrossRef]
  29. Y. Sato, T. Taira, and A. Ikesue, “Spectral Parameters of Nd3+-ion in the polycrystalline Solid-solution Composed of Y3Al5O12 and Y3Sc2Al3O12,” Jpn. J. Appl. Phys.42(8), 5071–5074 (2003).
  30. Y. Sato, I. Shijo, S. Kurimura, T. Taira, and A. Ikesue, “Spectroscopic properties of neodymium-doped Y2O3 ceramics,” OSA TOPS50, 417–421 (2001).
  31. N. Frage, S. Kalabukhov, N. Sverdlov, V. Ezersky, and M. P. Dariel, “Densification of transparent yttrium aluminum garnet (YAG) by SPS processing,” J. Eur. Ceram. Soc.30(16), 3331–3337 (2010). [CrossRef]
  32. M. Tokita, “Industrial applications of advanced spark plasma sintering,” Am. Ceram. Soc. Bull.85, 32–34 (2006).
  33. E. A. Olevsky, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: I. experimental analysis of scalability,” J. Am. Ceram. Soc.95(8), 2406–2413 (2012). [CrossRef]
  34. E. A. Olevsky, C. Garcia-Cardona, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: II. finite element analysis of scalability,” J. Am. Ceram. Soc.95(8), 2414–2422 (2012). [CrossRef]
  35. T. B. Holland, U. Anselmi-Tamburini, and A. K. Mukherjee, “Electric fields and the future of scalability in spark plasma sintering,” Scr. Mater.69(2), 117–121 (2013). [CrossRef]
  36. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, “Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments,” Adv. Eng. Mater. (to be published), doi:. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited